Patents by Inventor Fabio Felix
Fabio Felix has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220387171Abstract: Implants with fillable reservoirs have been developed that are suitable for rhinoplasty, breast reconstruction, ear reconstruction, and replacement, reconstruction or repair of other soft tissues. The implants can be filled with graft material prior to implantation. The implants are preferably made from resorbable polymers, can be tailored to provide different geometries, mechanical properties and resorption rates in order to provide more consistent surgical outcomes. The implants preferably have an interconnected network of unit cells with rnicroporous outer layers and optionally some or all of the unit cells having at least one macropore in their outer layers. The implants can be loaded by injection with microfat, collagen, DCF, cells, bioactive agents, and other augmentation materials, prior to implantation.Type: ApplicationFiled: February 24, 2022Publication date: December 8, 2022Applicant: Tepha, Inc.Inventors: Skander Limem, Fabio Felix, Said Rizk, David P. Martin, Simon F. Williams
-
Publication number: 20220362001Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: ApplicationFiled: July 22, 2022Publication date: November 17, 2022Applicant: Tepha, Inc.Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
-
Patent number: 11439490Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: GrantFiled: February 21, 2020Date of Patent: September 13, 2022Assignee: Tepha, Inc.Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
-
Patent number: 11292885Abstract: Methods to produce substantially closed cell foams with densities less than 0.75 g/cm3, and more preferably less than 0.5 g/cm3, without substantial loss of the polymer's weight average molecular weight, have been developed. The closed cells foams have an open cell content of generally less than 50%, and more preferably an open cell content of less than 20%, and the cells have a maximum diameter of less than 5 mm. The foam may include poly-4-hydroxybutyrate or a copolymer thereof. Preferably, the foam is derived by heating a foam polymer formula to a temperature above the melt temperature of the polymer to form a melt polymer system, adding a blowing agent to produce a foamable melt, extruding the foamable melt through a die to a lower pressure to cause foaming, cooling of the foam, and solidification of the foam. These foam structures can be used for fabrication of medical products.Type: GrantFiled: June 11, 2020Date of Patent: April 5, 2022Assignee: Tepha, Inc.Inventors: Dennis Connelly, Fabio Felix, David P. Martin, Jon Montcrieff, Said Rizk, Simon F. Williams
-
Patent number: 11291539Abstract: Implants with fillable reservoirs have been developed that are suitable for rhinoplasty, breast reconstruction, ear reconstruction, and replacement, reconstruction or repair of other soft tissues. The implants can be filled with graft material prior to implantation. The implants are preferably made from resorbable polymers, can be tailored to provide different geometries, mechanical properties and resorption rates in order to provide more consistent surgical outcomes. The implants preferably have an interconnected network of unit cells with microporous outer layers and optionally some or all of the unit cells having at least one macropore in their outer layers. The implants can be loaded by injection with microfat, collagen, DCF, cells, bioactive agents, and other augmentation materials, prior to implantation.Type: GrantFiled: November 19, 2018Date of Patent: April 5, 2022Assignee: Tepha, Inc.Inventors: Skander Limem, Fabio Felix, Said Rizk, David P. Martin, Simon F. Williams
-
Publication number: 20220096716Abstract: Methods to produce laminates including layers of constructs made from P4HB and copolymers thereof have been developed. These laminates may be used as medical implants, or further processed to make medical implants. The laminates are produced at a temperature equal to or greater than the softening points of the P4HB or copolymers thereof. The layers may include oriented forms of the constructs. Orientation can be preserved during lamination so that the laminate is also oriented, when the laminates are formed at temperatures less than the de-orientation temperatures of the layers. The laminate layers may include, for example, films, textiles, including woven, knitted, braided and non-woven textiles, foams, thermoforms, and fibers. The laminates preferably include one or more oriented P4HB films.Type: ApplicationFiled: September 22, 2021Publication date: March 31, 2022Applicant: Tepha, Inc.Inventors: Said Rizk, David P. Martin, Fabio Felix, Matthew Bernasconi, Bhavin Shah, Simon F. Williams
-
Patent number: 11154642Abstract: Methods to produce laminates including layers of constructs made from P4HB and copolymers thereof have been developed. These laminates may be used as medical implants, or further processed to make medical implants. The laminates are produced at a temperature equal to or greater than the softening points of the P4HB or copolymers thereof. The layers may include oriented forms of the constructs. Orientation can be preserved during lamination so that the laminate is also oriented, when the laminates are formed at temperatures less than the de-orientation temperatures of the layers. The laminate layers may include, for example, films, textiles, including woven, knitted, braided and non-woven textiles, foams, thermoforms, and fibers. The laminates preferably include one or more oriented P4HB films.Type: GrantFiled: December 18, 2014Date of Patent: October 26, 2021Assignee: Tepha, Inc.Inventors: Said Rizk, David P. Martin, Fabio Felix, Matthew Bernasconi, Bhavin Shah, Simon F. Williams
-
Publication number: 20200276006Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: ApplicationFiled: February 21, 2020Publication date: September 3, 2020Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
-
Publication number: 20200240044Abstract: Resorbable multifilament yarns and monofilament fibers including poly-4-hydroxybutyrate and copolymers thereof with high tenacity or high tensile strength have been developed. The yarns and fibers are produced by cold drawing the multifilament yarns and monofilament fibers before hot drawing the yarns and fibers under tension at temperatures above the melt temperature of the polymer or copolymer. These yarns and fibers have prolonged strength retention in vivo making them suitable for soft tissue repairs where high strength and strength retention is required. The multifilament yarns have tenacities higher than 8.1 grams per denier, and in vivo, retain at least 65% of their initial strength at 2 weeks. The monofilament fibers retain at least 50% of their initial strength at 4 weeks in vivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications.Type: ApplicationFiled: March 9, 2020Publication date: July 30, 2020Inventors: Amit Ganatra, Fabio Felix, Bhavin Shah, Matthew Bernasconi, Said Rizk, David P. Martin, Simon F. Williams
-
Patent number: 10722345Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: GrantFiled: August 23, 2018Date of Patent: July 28, 2020Assignee: TEPHA, INC.Inventors: Skander Limem, Emily Stires, Rebecca Holmes, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta, Antonio Fosco, David P. Martin, Simon F. Williams
-
Patent number: 10689498Abstract: Methods to produce substantially closed cell foams with densities less than 0.75 g/cm3, and more preferably less than 0.5 g/cm3, without substantial loss of the polymer's weight average molecular weight, have been developed. The closed cells foams have an open cell content of generally less than 50%, and more preferably an open cell content of less than 20%, and the cells have a maximum diameter of less than 5 mm. The foam may include poly-4-hydroxybutyrate or a copolymer thereof. Preferably, the foam is derived by heating a foam polymer formula to a temperature above the melt temperature of the polymer to form a melt polymer system, adding a blowing agent to produce a foamable melt, extruding the foamable melt through a die to a lower pressure to cause foaming, cooling of the foam, and solidification of the foam. These foam structures can be used for fabrication of medical products.Type: GrantFiled: August 20, 2014Date of Patent: June 23, 2020Assignee: Tepha, Inc.Inventors: Dennis Connelly, Fabio Felix, David P. Martin, Jon Montcrieff, Said Rizk, Simon F. Williams
-
Patent number: 10590566Abstract: Resorbable multifilament yarns and monofilament fibers including poly-4-hydroxybutyrate and copolymers thereof with high tenacity or high tensile strength have been developed. The yarns and fibers are produced by cold drawing the multifilament yarns and monofilament fibers before hot drawing the yarns and fibers under tension at temperatures above the melt temperature of the polymer or copolymer. These yarns and fibers have prolonged strength retention in vivo making them suitable for soft tissue repairs where high strength and strength retention is required. The multifilament yarns have tenacities higher than 8.1 grams per denier, and in vivo, retain at least 65% of their initial strength at 2 weeks. The monofilament fibers retain at least 50% of their initial strength at 4 weeks in vivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications.Type: GrantFiled: March 19, 2018Date of Patent: March 17, 2020Assignee: Tepha, Inc.Inventors: Amit Ganatra, Fabio Felix, Bhavin Shah, Matthew Bernasconi, Said Rizk, David P. Martin, Simon F. Williams
-
Patent number: 10568728Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: GrantFiled: July 23, 2018Date of Patent: February 25, 2020Assignee: Tepha, Inc.Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
-
Publication number: 20190151081Abstract: Implants with fillable reservoirs have been developed that are suitable for rhinoplasty, breast reconstruction, ear reconstruction, and replacement, reconstruction or repair of other soft tissues. The implants can be filled with graft material prior to implantation. The implants are preferably made from resorbable polymers, can be tailored to provide different geometries, mechanical properties and resorption rates in order to provide more consistent surgical outcomes. The implants preferably have an interconnected network of unit cells with microporous outer layers and optionally some or all of the unit cells having at least one macropore in their outer layers. The implants can be loaded by injection with microfat, collagen, DCF, cells, bioactive agents, and other augmentation materials, prior to implantation.Type: ApplicationFiled: November 19, 2018Publication date: May 23, 2019Inventors: Skander Limem, Fabio Felix, Said Rizk, David P. Martin, Simon F. Williams
-
Patent number: D857895Type: GrantFiled: October 17, 2017Date of Patent: August 27, 2019Assignee: Tepha, Inc.Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta
-
Patent number: D870289Type: GrantFiled: October 22, 2018Date of Patent: December 17, 2019Assignee: Tepah, Inc.Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta
-
Patent number: D888244Type: GrantFiled: October 29, 2018Date of Patent: June 23, 2020Assignee: Tepha, Inc.Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta
-
Patent number: D894393Type: GrantFiled: November 6, 2019Date of Patent: August 25, 2020Assignee: Tepha, Inc.Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta
-
Patent number: D927689Type: GrantFiled: May 18, 2020Date of Patent: August 10, 2021Assignee: Tepha, Inc.Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta
-
Patent number: D985773Type: GrantFiled: July 10, 2021Date of Patent: May 9, 2023Assignee: Tepha, Inc.Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta