Patents by Inventor Fabio Felix
Fabio Felix has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10590566Abstract: Resorbable multifilament yarns and monofilament fibers including poly-4-hydroxybutyrate and copolymers thereof with high tenacity or high tensile strength have been developed. The yarns and fibers are produced by cold drawing the multifilament yarns and monofilament fibers before hot drawing the yarns and fibers under tension at temperatures above the melt temperature of the polymer or copolymer. These yarns and fibers have prolonged strength retention in vivo making them suitable for soft tissue repairs where high strength and strength retention is required. The multifilament yarns have tenacities higher than 8.1 grams per denier, and in vivo, retain at least 65% of their initial strength at 2 weeks. The monofilament fibers retain at least 50% of their initial strength at 4 weeks in vivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications.Type: GrantFiled: March 19, 2018Date of Patent: March 17, 2020Assignee: Tepha, Inc.Inventors: Amit Ganatra, Fabio Felix, Bhavin Shah, Matthew Bernasconi, Said Rizk, David P. Martin, Simon F. Williams
-
Patent number: 10568728Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: GrantFiled: July 23, 2018Date of Patent: February 25, 2020Assignee: Tepha, Inc.Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
-
Publication number: 20190151081Abstract: Implants with fillable reservoirs have been developed that are suitable for rhinoplasty, breast reconstruction, ear reconstruction, and replacement, reconstruction or repair of other soft tissues. The implants can be filled with graft material prior to implantation. The implants are preferably made from resorbable polymers, can be tailored to provide different geometries, mechanical properties and resorption rates in order to provide more consistent surgical outcomes. The implants preferably have an interconnected network of unit cells with microporous outer layers and optionally some or all of the unit cells having at least one macropore in their outer layers. The implants can be loaded by injection with microfat, collagen, DCF, cells, bioactive agents, and other augmentation materials, prior to implantation.Type: ApplicationFiled: November 19, 2018Publication date: May 23, 2019Inventors: Skander Limem, Fabio Felix, Said Rizk, David P. Martin, Simon F. Williams
-
Publication number: 20190125519Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: ApplicationFiled: August 23, 2018Publication date: May 2, 2019Inventors: Skander Limem, Emily Stires, Rebecca Holmes, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta, Antonio Fosco, David P. Martin, Simon F. Williams
-
Patent number: 10227713Abstract: Resorbable multifilament yarns and monofilament fibers including poly-4-hydroxybutyrate and copolymers thereof with high tenacity or high tensile strength have been developed. The yarns and fibers are produced by cold drawing the multifilament yarns and monofilament fibers before hot drawing the yarns and fibers under tension at temperatures above the melt temperature of the polymer or copolymer. These yarns and fibers have prolonged strength retention in vivo making them suitable for soft tissue repairs where high strength and strength retention is required. The multifilament yarns have tenacities higher than 8.1 grams per denier, and in vivo, retain at least 65% of their initial strength at 2 weeks. The monofilament fibers retain at least 50% of their initial strength at 4 weeks in vivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications.Type: GrantFiled: December 5, 2016Date of Patent: March 12, 2019Assignee: Tepha, Inc.Inventors: Amit Ganatra, Fabio Felix, Bhavin Shah, Matthew Bernasconi, Said Rizk, David P. Martin, Simon F. Williams
-
Publication number: 20180325644Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: ApplicationFiled: July 23, 2018Publication date: November 15, 2018Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
-
Patent number: 10058417Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: GrantFiled: April 17, 2017Date of Patent: August 28, 2018Assignee: Tepha, Inc.Inventors: Skander Limem, Emily Stires, Rebecca Holmes, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta, Antonio Fosco, David P. Martin, Simon F. Williams
-
Publication number: 20180209073Abstract: Resorbable multifilament yarns and monofilament fibers including poly-4-hydroxybutyrate and copolymers thereof with high tenacity or high tensile strength have been developed. The yarns and fibers are produced by cold drawing the multifilament yarns and monofilament fibers before hot drawing the yarns and fibers under tension at temperatures above the melt temperature of the polymer or copolymer. These yarns and fibers have prolonged strength retention in vivo making them suitable for soft tissue repairs where high strength and strength retention is required. The multifilament yarns have tenacities higher than 8.1 grams per denier, and in vivo, retain at least 65% of their initial strength at 2 weeks. The monofilament fibers retain at least 50% of their initial strength at 4 weeks in vivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications.Type: ApplicationFiled: March 19, 2018Publication date: July 26, 2018Inventors: Amit Ganatra, Fabio Felix, Bhavin Shah, Matthew Bernasconi, Said Rizk, David P. Martin, Simon F. Williams
-
Patent number: 10028818Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: GrantFiled: April 17, 2017Date of Patent: July 24, 2018Assignee: Tepha, Inc.Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
-
Publication number: 20170216018Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: ApplicationFiled: April 17, 2017Publication date: August 3, 2017Inventors: Skander Limem, Emily Stires, Rebecca Holmes, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta
-
Publication number: 20170216009Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: ApplicationFiled: April 17, 2017Publication date: August 3, 2017Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
-
Patent number: 9655715Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: GrantFiled: April 23, 2015Date of Patent: May 23, 2017Assignee: Tepha, Inc.Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta
-
Patent number: 9636211Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the ingrowth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: GrantFiled: July 30, 2015Date of Patent: May 2, 2017Assignee: Tepha, Inc.Inventors: Fabio Felix, Antonio Fosco, David P Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
-
Publication number: 20170081784Abstract: Resorbable multifilament yarns and monofilament fibers including poly-4-hydroxybutyrate and copolymers thereof with high tenacity or high tensile strength have been developed. The yarns and fibers are produced by cold drawing the multifilament yarns and monofilament fibers before hot drawing the yarns and fibers under tension at temperatures above the melt temperature of the polymer or copolymer. These yarns and fibers have prolonged strength retention in vivo making them suitable for soft tissue repairs where high strength and strength retention is required. The multifilament yarns have tenacities higher than 8.1 grams per denier, and in vivo, retain at least 65% of their initial strength at 2 weeks. The monofilament fibers retain at least 50% of their initial strength at 4 weeks in vivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications.Type: ApplicationFiled: December 5, 2016Publication date: March 23, 2017Inventors: Amit Ganatra, Fabio Felix, Bhavin Shah, Matthew Bernasconi, Said Rizk, David P. Martin, Simon F. Williams
-
Patent number: D803401Type: GrantFiled: April 23, 2015Date of Patent: November 21, 2017Assignee: TEPHA, INC.Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta
-
Patent number: D816220Type: GrantFiled: April 11, 2017Date of Patent: April 24, 2018Assignee: Tepha, Inc.Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta
-
Patent number: D816221Type: GrantFiled: April 11, 2017Date of Patent: April 24, 2018Assignee: Tepha, Inc.Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta
-
Patent number: D836778Type: GrantFiled: October 9, 2015Date of Patent: December 25, 2018Assignee: Tepha, Inc.Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta
-
Patent number: D857895Type: GrantFiled: October 17, 2017Date of Patent: August 27, 2019Assignee: Tepha, Inc.Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta
-
Patent number: D870289Type: GrantFiled: October 22, 2018Date of Patent: December 17, 2019Assignee: Tepah, Inc.Inventors: Skander Limem, Emily Stires, Rebecca Marciante, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta