Patents by Inventor Federico Capasso

Federico Capasso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11867937
    Abstract: The present disclosure provides an optical component, which may be a metasurface grating, including (a) a substrate; and (b) an array of subwavelength-spaced phase-shifting elements, which are tessellated on the substrate to produce, when illuminated with a polarized incident light, a diffracted light beam with a distinct polarization state for each of a finite number of diffraction orders, wherein the finite number is 2 or more.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: January 9, 2024
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Noah A. Rubin, Federico Capasso
  • Patent number: 11860336
    Abstract: An optical device includes a membrane. The membrane includes a plurality of apertures extending at least partially through a thickness of the membrane. The membrane is configured to structure incoming light having a wavelength to produce modified light. The wavelength of the incoming light in vacuum is in a range of ultraviolet light and mid-infrared. The membrane is configured to reflect the modified light away from the membrane or transmit the modified light through the membrane. A separation between each of the plurality of apertures is subwavelength relative to the wavelength of the incoming light. A width of each of the plurality of apertures is subwavelength relative to the wavelength of the incoming light. A length of each of the plurality of apertures is wavelength-scale relative to the wavelength of the incoming light.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: January 2, 2024
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Maryna Leonidivna Meretska, Soon Wei Daniel Lim, Federico Capasso
  • Patent number: 11835680
    Abstract: An optical device comprises a first meta-lens and a second meta-lens. The first meta-lens includes a first plurality of nanostructures that define a first phase profile of the first meta-lens. The second meta-lens includes a second plurality of nanostructures that define a second phase profile of the second meta-lens. A combination of the first meta-lens having the first phase profile and the second meta-lens having the second phase profile is configured to achieve a diffraction-limited focusing and correct an aberration of light transmitted through the optical device.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: December 5, 2023
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Benedikt Groever, Wei-Ting Chen, Federico Capasso
  • Patent number: 11835681
    Abstract: A multi-layered lens comprises a plurality of metasurface layers. At least some layers of the plurality of metasurface layers include features that exhibit angular phase controls. The angular phases of the at least some layers cause an angular aberration correction or an angle convergence that focuses light onto a focal point regardless of angles of incidence.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: December 5, 2023
    Assignees: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, PRINCETON UNIVERSITY
    Inventors: Zin Lin, Federico Capasso, Alejandro W. Rodriquez, Marko Loncar, Benedikt Groever
  • Patent number: 11815668
    Abstract: A method of fabricating a visible spectrum optical component includes: providing a substrate; forming a resist layer over a surface of the substrate; patterning the resist layer to form a patterned resist layer defining openings exposing portions of the surface of the substrate; performing deposition to form a dielectric film over the patterned resist layer and over the exposed portions of the surface of the substrate, wherein a top surface of the dielectric film is above a top surface of the patterned resist layer; removing a top portion of the dielectric film to expose the top surface of the patterned resist layer and top surfaces of dielectric units within the openings of the patterned resist layer; and removing the patterned resist layer to retain the dielectric units over the substrate.
    Type: Grant
    Filed: May 25, 2022
    Date of Patent: November 14, 2023
    Assignees: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Robert C. Devlin, Mohammadreza Khorasaninejad, Federico Capasso, Hongkun Park, Alexander Arthur High
  • Publication number: 20230324612
    Abstract: A device includes a first mode converter and a second mode converter that define a region between the first mode converter and the second mode converter. The region can contain a plurality of optical modes including at least three modes. The first mode converter and the second mode converter can generate a near-field via a conversion between the plurality of optical modes. The first mode converter can receive an input wave of a first mode and the second mode converter can generate an output wave of a second mode different from the first mode. The first mode converter and the second mode converter can generate a confined near-field via a conversion between the plurality of optical modes.
    Type: Application
    Filed: July 1, 2021
    Publication date: October 12, 2023
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Vincent GINIS, Marco PICCARDO, Michele TAMAGNONE, Federico CAPASSO
  • Publication number: 20230318261
    Abstract: A laser device includes a gain medium including a facet. The laser device includes a metasurface including a plurality of supercells. The metasurface is disposed on a substrate and configured to reflect and focus a first portion of light from the facet back to the gain medium as a feedback beam. The metasurface can be configured to reflect a second portion of the light as an output beam at an angle that is nonzero relative to a direction of the feedback beam. The metasurface can be configured to transmit a second portion of the light as an output beam through the metasurface away from the facet. The emission wavelength of the laser device can be tuned by translating the metasurface. The output beam can be collimated towards a fixed direction while tuning the wavelength.
    Type: Application
    Filed: June 1, 2023
    Publication date: October 5, 2023
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Michele TAMAGNONE, Marco PICCARDO, Dmitry KAZAKOV, Christina Maria SPÄGELE, Federico CAPASSO
  • Patent number: 11774635
    Abstract: An optical device includes a first zone including a first plurality of nanoscale elements. The first plurality of nanoscale elements has a first optical dispersion profile and a first orientation. The optical device has a second zone including a second plurality of nanoscale elements. The second plurality of nanoscale elements has a second optical dispersion profile and a second orientation. The first orientation and the second orientation are configured according to constructive interference for a plurality of wavelengths and a focal length.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: October 3, 2023
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Zhaoyi Li, Yao-Wei Huang, Federico Capasso
  • Publication number: 20230288716
    Abstract: An optical component comprises a metasurface comprising nanoscale elements. The metasurface is configured to receive incident light and to generate optical outputs. The geometries and/or orientations of the nanoscale elements provide a first optical output upon receiving a polarized incident light with a first polarization, and provide a second optical output upon receiving a polarized incident light with a second polarization that is different from the first polarization.
    Type: Application
    Filed: March 13, 2023
    Publication date: September 14, 2023
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Noah A. RUBIN, Jan Philipp Balthasar MUELLER, Federico CAPASSO
  • Patent number: 11733535
    Abstract: Multi-wavelength light is directed to an optic including a substrate and achromatic metasurface optical components deposited on a surface of the substrate. The achromatic metasurface optical components comprise a pattern of dielectric resonators. The dielectric resonators have nonperiodic gap distances between adjacent dielectric resonators; and each dielectric resonator has a width, w, that is distinct from the width of other dielectric resonators. A plurality of wavelengths of interest selected from the wavelengths of the multi-wavelength light are deflected with the achromatic metasurface optical components at a shared angle or to or from a focal point at a shared focal length.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: August 22, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: Francesco Aieta, Mikhail Kats, Patrice Genevet, Federico Capasso, Mohammadreza Khorasaninejad
  • Publication number: 20230258867
    Abstract: A device includes a first mode converter and a second mode converter that define a region between the first mode converter and the second mode converter. The region can contain a plurality of orthogonal modes of a wave. The wave, when sent from outside the region and when propagating from the first mode converter towards the second mode converter, can include a first mode of the plurality of orthogonal modes. The second mode converter can convert the wave from the first mode of the plurality of orthogonal modes, to a second mode of the plurality of orthogonal modes that is different from the first mode. The first mode converter can convert the wave to the first mode of the plurality of orthogonal modes.
    Type: Application
    Filed: February 15, 2023
    Publication date: August 17, 2023
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Vincent Ginis, Ileana-Cristina BENEA-CHELMUS, Jinsheng LU, Marco PICCARDO, Federico CAPASSO
  • Publication number: 20230208104
    Abstract: A laser device includes a gain medium including a facet. The laser device includes a metasurface including a plurality of supercells. The metasurface is disposed on a substrate and configured to reflect and focus a first portion of light from the facet back to the gain medium as a feedback beam. The metasurface can be configured to reflect a second portion of the light as an output beam at an angle that is nonzero relative to a direction of the feedback beam. The metasurface can be configured to transmit a second portion of the light as an output beam through the metasurface away from the facet. The emission wavelength of the laser device can be tuned by translating the metasurface. The output beam can be collimated towards a fixed direction while tuning the wavelength.
    Type: Application
    Filed: May 7, 2021
    Publication date: June 29, 2023
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Michele TAMAGNONE, Marco PICCARDO, Dmitry KAZAKOV, Christina Maria SPÄGELE, Federico CAPASSO
  • Publication number: 20230088292
    Abstract: An optical system, comprising: (i) multiple input optical fibers; (ii) an optical mode multiplexer/demultiplexer coupled to said input optical fibers with, said optical mode multiplexer/demultiplexer comprising a plurality of metamaterial structures having length and forming at least one stage of metamaterials, the at least one stage of metamaterials is being situated on a surface of the optical mode multiplexer/demultiplexer facing the input optical fibers, and the at least one stage of metamaterials is oriented at angles between 60 and 120 degrees relative to the axis of the input fibers; and the metasurfaces are structured to receive a first optical signal having a first mode from at least one of said multiple input optical fibers and convert the first mode to a different mode.
    Type: Application
    Filed: January 29, 2021
    Publication date: March 23, 2023
    Inventors: Federico Capasso, Wei-Ting Chen, Paulo Clovis Dainese, Jr., Kangmei Li, Ming-Jun Li, Jaewon Oh, Jun Yang
  • Publication number: 20230085821
    Abstract: Systems, devices, and techniques for performing wavelength division multiplexing or demultiplexing using one or more metamaterials in an optical communications systems are described. An optical device may be configured to shift one or more phase profiles of an optical signal using one or more stages of metamaterials to multiplex or demultiplex wavelengths of optical signals. The optical device may be an example of a stacked design with two or more stages of metamaterials stacked on top of one another. The optical device may be an example of a folded design that reflects optical signals between different stages of metamaterials.
    Type: Application
    Filed: January 29, 2021
    Publication date: March 23, 2023
    Inventors: Federico Capasso, Wei-Ting Chen, Paulo Clovis Dainese, Jr., Kangmei Li, Ming-Jun Li, Jaewon Oh, Jun Yang
  • Publication number: 20230085245
    Abstract: Disclosed is a broadband achromatic metasurface waveplate including a device that includes a plurality of nanostructures physically coupled to a substrate and formed at least partially of a dielectric material having a first refractive index and an anti-reflective film applied to a surface of the device. The anti-reflective film may include a material having a second refractive index that is less than the first refractive index. The device and the anti-reflective film may modify incident light with wavelengths extending over a bandwidth of at least 100 nanometers to impart a substantially uniform phase retardation across the wavelengths and a transmittance of at least 90 percent across the wavelengths.
    Type: Application
    Filed: September 8, 2022
    Publication date: March 16, 2023
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Xinghui YIN, Federico CAPASSO
  • Patent number: 11604364
    Abstract: An optical component comprises a metasurface comprising nanoscale elements. The metasurface is configured to receive incident light and to generate optical outputs. The geometries and/or orientations of the nanoscale elements provide a first optical output upon receiving a polarized incident light with a first polarization, and provide a second optical output upon receiving a polarized incident light with a second polarization that is different from the first polarization.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: March 14, 2023
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Noah A. Rubin, Jan Philipp Balthasar Mueller, Federico Capasso
  • Publication number: 20230054228
    Abstract: Systems, devices, and techniques for performing wavelength division multiplexing or demultiplexing using one or more metamaterials in an optical communications systems are described. An optical device may be configured to shift one or more phase profiles of an optical signal using one or more stages of metamaterials to multiplex or demultiplex wavelengths of optical signals. The optical device may be an example of a stacked design with two or more stages of metamaterials stacked on top of one another. The optical device may be an example of a folded design that reflects optical signals between different stages of metamaterials.
    Type: Application
    Filed: January 29, 2021
    Publication date: February 23, 2023
    Inventors: Federico Capasso, Wei-Ting Chen, Paulo Clovis Dainese, JR., Kangmei Li, Ming-Jun Li, Jaewon Oh, Jun Yang
  • Patent number: 11578968
    Abstract: Disclosed is a depth sensor for determining depth. The depth sensor can include a photosensor, a metalens configured to manipulate light to simultaneously produce at least two images having different focal distances on a surface of the photosensor, and processing circuitry configured to receive, from the photosensor, a measurement of the at least two images having different focal distances. The depth sensor can determine, according to the measurement, a depth associated with at least one feature in the at least two images.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: February 14, 2023
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Federico Capasso, Todd Zickler, Qi Guo, Zhujun Shi, Yao-Wei Huang, Emma Alexander
  • Publication number: 20230021549
    Abstract: Disclosed is a method of generating a functional singularity at a point or collection of points. The method may include determining a relationship between one or more parameters associated with a physical structure and a spatial gradient of field values of at least one of electromagnetic energy, sound energy, particle beam, or water waves manipulated by the physical structure, configuring, according to the relationship, the spatial gradient of field values to represent a functional singularity at a point, performing backpropagation using the spatial gradient of field values to obtain design parameters corresponding to values for the one or more parameters that achieve the functional singularity at the point, and producing a physical structure having the design parameters.
    Type: Application
    Filed: January 19, 2022
    Publication date: January 26, 2023
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Soon Wei Daniel LIM, Joon-Suh PARK, Maryna Leonidivna MERETSKA, Federico CAPASSO, Ahmed Hassen Dorrah
  • Publication number: 20220404525
    Abstract: An optical metasurface film includes a flexible polymeric film having a first major surface, a patterned polymer layer having a first surface proximate to the first major surface of the flexible polymeric film and having a second nanostructured surface opposite the first surface, and a refractive index contrast layer adjacent to the nanostructured surface of the patterned polymer layer forming a nanostructured bilayer with a nanostructured interface. The nanostructured bilayer acts locally on amplitude, phase, or polarization of light, or a combination thereof and imparts a light phase shift that varies as a function of position of the nano structured bilayer on the flexible polymeric film. The light phase shift of the nanostructured bilayer defines a predetermined operative phase profile of the optical metasurface film.
    Type: Application
    Filed: December 1, 2020
    Publication date: December 22, 2022
    Inventors: Martin B. Wolk, Robert L. Brott, Karl K. Stensvad, James M. Nelson, Federico Capasso, Xinghui Yin, Joon-Suh Park