Patents by Inventor Feliks Frenkel

Feliks Frenkel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11984200
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample from a plurality of subjects, determining a respective plurality of molecular-functional (MF) profiles for the plurality of subjects, and storing the plurality of MF profiles in association with information identifying the particular cancer type.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: May 14, 2024
    Assignee: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov, Olga Isaeva
  • Patent number: 11904002
    Abstract: Methods described herein relate to constructing therapeutic fusion-specific vaccine libraries, selecting a therapeutic fusion-specific vaccine for a cancer patient, and/or constructing a de novo therapeutic fusion-specific vaccine for patients having a gene fusion that is absent from a fusion-specific vaccine library.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: February 20, 2024
    Assignee: BostonGene Corporation
    Inventors: Maksym Artomov, Feliks Frenkel, Igor Golubev, Olga Zolotareva
  • Publication number: 20240006029
    Abstract: Techniques for determining therapy scores for at least two of an anti-PD1 therapy, an anti-CTLA4 therapy, an IL-2 therapy, an IFN alpha therapy, an anti-cancer vaccine therapy, an anti-angiogenic therapy, and an anti-CD20 therapy. The techniques include determining, using sequencing data for the subject and information indicating distribution of biomarker values across one or more reference populations, a first set of normalized biomarker scores for a first set of biomarkers associated with a first therapy; and a second set of normalized biomarker scores for a second set of biomarkers associated with a second therapy; providing the first set of normalized biomarker scores as input to a statistical model to obtain a first therapy score for the first therapy; and providing the second set of normalized biomarker scores as input to the statistical model to obtain a second therapy score for the second therapy.
    Type: Application
    Filed: September 1, 2023
    Publication date: January 4, 2024
    Applicant: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Ravshan Ataullakhanov
  • Patent number: 11842797
    Abstract: Techniques for determining therapy scores for at least two of an anti-PD1 therapy, an anti-CTLA4 therapy, an IL-2 therapy, an IFN alpha therapy, an anti-cancer vaccine therapy, an anti-angiogenic therapy, and an anti-CD20 therapy. The techniques include determining, using sequencing data for the subject and information indicating distribution of biomarker values across one or more reference populations, a first set of normalized biomarker scores for a first set of biomarkers associated with a first therapy; and a second set of normalized biomarker scores for a second set of biomarkers associated with a second therapy; providing the first set of normalized biomarker scores as input to a statistical model to obtain a first therapy score for the first therapy; and providing the second set of normalized biomarker scores as input to the statistical model to obtain a second therapy score for the second therapy.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 12, 2023
    Assignee: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Ravshan Ataullakhanov
  • Patent number: 11705220
    Abstract: Techniques for generating therapy biomarker scores and visualizing same. The techniques include determining, using a patient's sequence data and distributions of biomarker values across one or more reference populations, a first set of normalized scores for a first set of biomarkers associated with a first therapy, and a second set of normalized scores for a second set of biomarkers associated with a second therapy, generating a graphical user interface (GUI) including a first portion associated with the first therapy and having at least one visual characteristic determined based on a normalized score of the respective biomarker in the first set of normalized scores; and a second portion associated with a second therapy and having at least one visual characteristic determined based on a normalized score of the respective biomarker in the second set of normalized scores; and displaying the generated GUI.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: July 18, 2023
    Assignee: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Ravshan Ataullakhanov
  • Publication number: 20220389512
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample; determining a molecular-functional (MF) profile for a subject using the data; determining visual characteristics GUI elements using the data; generating a GUI personalized to the subject using the determined visual characteristics; and presenting the generated personalized GUI to a user.
    Type: Application
    Filed: March 18, 2022
    Publication date: December 8, 2022
    Applicant: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov, Olga Isaeva
  • Patent number: 11430545
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample; determining a molecular-functional (MF) profile for the subject at least in part by determining first and second visual characteristics for first and second GUI elements using the data; generating a personalized GUI personalized to the subject using the first and second visual characteristics; and presenting the generated personalized GUI to a user.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: August 30, 2022
    Assignee: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov, Olga Isaeva
  • Publication number: 20220223227
    Abstract: Techniques for identifying malignant cell populations. The techniques include: obtaining sequencing data previously obtained from a biological sample from a subject; processing the sequencing data to identify: a plurality of cell population estimates for a cell of a first type, the plurality of cell population estimates including a first cell population estimate and a second cell population estimate associated respectively with largest and second largest cell population estimates from among the identified plurality of cell population estimates; and features associated with the plurality of cell population estimates, the features including: a first feature indicative of a size of the first cell population estimate; and a second feature indicative of a ratio between sizes of the first cell population estimate and the second cell population estimate; and determining, using the features and a trained machine learning model, whether the first cell population estimate includes malignant cells of the first type.
    Type: Application
    Filed: December 16, 2021
    Publication date: July 14, 2022
    Applicant: BostonGene Corporation
    Inventors: Olga Kudryashova, Mark Meerson, Vasiliy Minkov, Nikita Kotlov, Feliks Frenkel
  • Patent number: 11373733
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample from a subject; determining a molecular-functional (MF) profile for the subject; identifying an MF profile cluster with which to associate the MF profile for the subject; and clustering the plurality of MF profiles to obtain the MF profile clusters.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: June 28, 2022
    Assignee: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov, Olga Isaeva
  • Patent number: 11367509
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample from a subject; determining a molecular-functional (MF) profile for the subject; identifying an MF profile cluster with which to associate the MF profile for the subject; and clustering the plurality of MF profiles to obtain the MF profile clusters.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: June 21, 2022
    Assignee: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov, Olga Isaeva
  • Patent number: 11335439
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample from a subject; determining a molecular-functional (MF) profile for the subject; identifying an MF profile cluster with which to associate the MF profile for the subject; and clustering the plurality of MF profiles to obtain the MF profile clusters.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: May 17, 2022
    Assignee: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov, Olga Isaeva
  • Patent number: 11322226
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample; determining a molecular-functional (MF) profile using the data; determining sets of visual characteristics for GUI elements using the data; generating a personalized GUI using the determined visual characteristics; and presenting the generated personalized GUI to a user.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: May 3, 2022
    Assignee: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov, Olga Isaeva
  • Patent number: 11302420
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample; determining a molecular-functional (MF) profile for a subject using the data; determining visual characteristics GUI elements using the data; generating a GUI personalized to the subject using the determined visual characteristics; and presenting the generated personalized GUI to a user.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: April 12, 2022
    Assignee: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov, Olga Isaeva
  • Publication number: 20210257058
    Abstract: Techniques for generating therapy biomarker scores and visualizing same. The techniques include determining, using a patient's sequence data and distributions of biomarker values across one or more reference populations, a first set of normalized scores for a first set of biomarkers associated with a first therapy, and a second set of normalized scores for a second set of biomarkers associated with a second therapy, generating a graphical user interface (GUI) including a first portion associated with the first therapy and having at least one visual characteristic determined based on a normalized score of the respective biomarker in the first set of normalized scores; and a second portion associated with a second therapy and having at least one visual characteristic determined based on a normalized score of the respective biomarker in the second set of normalized scores; and displaying the generated GUI.
    Type: Application
    Filed: April 22, 2021
    Publication date: August 19, 2021
    Applicant: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Ravshan Ataullakhanov
  • Publication number: 20210249107
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample; determining a molecular-functional (MF) profile for a subject using the data; determining visual characteristics GUI elements using the data; generating a GUI personalized to the subject using the determined visual characteristics; and presenting the generated personalized GUI to a user.
    Type: Application
    Filed: May 11, 2020
    Publication date: August 12, 2021
    Applicant: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov
  • Patent number: 11004542
    Abstract: Techniques for generating therapy biomarker scores and visualizing same. The techniques include determining, using a patient's sequence data and distributions of biomarker values across one or more reference populations, a first set of normalized scores for a first set of biomarkers associated with a first therapy, and a second set of normalized scores for a second set of biomarkers associated with a second therapy, generating a graphical user interface (GUI) including a first portion associated with the first therapy and having at least one visual characteristic determined based on a normalized score of the respective biomarker in the first set of normalized scores; and a second portion associated with a second therapy and having at least one visual characteristic determined based on a normalized score of the respective biomarker in the second set of normalized scores; and displaying the generated GUI.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: May 11, 2021
    Assignee: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Ravshan Ataullakhanov
  • Publication number: 20200335180
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample from a subject; determining a molecular-functional (MF) profile for the subject; identifying an MF profile cluster with which to associate the MF profile for the subject; and clustering the plurality of MF profiles to obtain the MF profile clusters.
    Type: Application
    Filed: July 2, 2020
    Publication date: October 22, 2020
    Applicant: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov
  • Publication number: 20200273543
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample; determining a molecular-functional (MF) profile for a subject using the data; determining visual characteristics GUI elements using the data; generating a GUI personalized to the subject using the determined visual characteristics; and presenting the generated personalized GUI to a user.
    Type: Application
    Filed: May 11, 2020
    Publication date: August 27, 2020
    Applicant: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov
  • Publication number: 20200265924
    Abstract: Techniques for generating therapy biomarker scores and visualizing same. The techniques include determining, using a patient's sequence data and distributions of biomarker values across one or more reference populations, a first set of normalized scores for a first set of biomarkers associated with a first therapy, and a second set of normalized scores for a second set of biomarkers associated with a second therapy, generating a graphical user interface (GUI) including a first portion associated with the first therapy and having at least one visual characteristic determined based on a normalized score of the respective biomarker in the first set of normalized scores; and a second portion associated with a second therapy and having at least one visual characteristic determined based on a normalized score of the respective biomarker in the second set of normalized scores; and displaying the generated GUI.
    Type: Application
    Filed: April 23, 2020
    Publication date: August 20, 2020
    Applicant: BostonGene Corporation
    Inventors: Alexander Bagaev, Feliks Frenkel, Ravshan Ataullakhanov
  • Patent number: 10720230
    Abstract: Techniques for determining whether a subject is likely to respond to an immune checkpoint blockade therapy.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: July 21, 2020
    Assignee: BostonGene Corporation
    Inventors: Feliks Frenkel, Nikita Kotlov, Alexander Bagaev, Maksym Artomov, Ravshan Ataullakhanov