Patents by Inventor Feng Chi

Feng Chi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940551
    Abstract: A radar detector including a radar transmitting device, a radar receiving device, an analog-to-digital converter (ADC), and a digital processing unit, and an interference suppression method using the radar detector are provided. The radar transmitting device transmits a first wireless signal. The radar receiving device receives a second wireless signal to generate an analog reference signal in response to the first wireless signal is subdued from being transmitted, and receives a third wireless signal to generate an analog main signal in response to the first wireless signal is not subdued from being transmitted. The ADC generates a digital reference signal according to the analog reference signal, and generates a digital main signal according to the analog main signal. The digital processing unit adjusts the digital or analog main signal according to the digital reference signal to correspondingly suppress interference components in the digital main signal or in the analog main signal.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: March 26, 2024
    Assignee: RichWave Technology Corp.
    Inventor: Hsiang-Feng Chi
  • Patent number: 11928894
    Abstract: Methods, apparatus and systems for wireless gait recognition and rhythmic motion monitoring are described. In one example, a described system comprises: a transmitter, a receiver, and a processor. The transmitter is configured for transmitting a first wireless signal towards an object in a venue through a wireless multipath channel of the venue. The receiver is configured for: receiving a second wireless signal through the wireless multipath channel between the transmitter and the receiver. The second wireless signal differs from the first wireless signal due to the wireless multipath channel which is impacted by a rhythmic motion of the object. The processor is configured for: obtaining a time series of channel information (CI) of the wireless multipath channel based on the second wireless signal, monitoring the rhythmic motion of the object based on the time series of CI (TSCI), and triggering a response action based on a result of the monitoring.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: March 12, 2024
    Assignee: ORIGIN WIRELESS, INC.
    Inventors: Chenshu Wu, Feng Zhang, Beibei Wang, Yuqian Hu, K. J. Ray Liu, Oscar Chi-Lim Au
  • Publication number: 20240077350
    Abstract: An optical detection device includes a first linear light source, a second linear light source, an optical sensor array and a processor. The first linear light source is adapted to project a first long strip illumination beam onto the target container. The second linear light source is adapted to project a second long strip illumination beam onto the target container, and the second long strip illumination beam is crossed with the first long strip illumination beam. The optical sensor array is adapted to receive a first long strip detection beam and a second long strip detection beam reflected from the target container. The processor is electrically connected to the optical sensor array. The processor is adapted to analyze intensity distribution of the first long strip detection beam and the second long strip detection beam to acquire a relative distance between the optical sensor array and the target container.
    Type: Application
    Filed: November 14, 2023
    Publication date: March 7, 2024
    Applicant: PixArt Imaging Inc.
    Inventors: Feng-Chi Liu, Chi-Chieh Liao, Guo-Zhen Wang, Hung-Ching Lai
  • Patent number: 11923338
    Abstract: A method includes bonding a first wafer to a second wafer, with a first plurality of dielectric layers in the first wafer and a second plurality of dielectric layers in the second wafer bonded between a first substrate of the first wafer and a second substrate in the second wafer. A first opening is formed in the first substrate, and the first plurality of dielectric layers and the second wafer are etched through the first opening to form a second opening. A metal pad in the second plurality of dielectric layers is exposed to the second opening. A conductive plug is formed extending into the first and the second openings.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Ying Ho, Jeng-Shyan Lin, Wen-I Hsu, Feng-Chi Hung, Dun-Nian Yaung, Ying-Ling Tsai
  • Patent number: 11915977
    Abstract: A stacked integrated circuit (IC) device and a method are disclosed. The stacked IC device includes a first semiconductor element. The first substrate includes a dielectric block in the first substrate; and a plurality of first conductive features formed in first inter-metal dielectric layers over the first substrate. The stacked IC device also includes a second semiconductor element bonded on the first semiconductor element. The second semiconductor element includes a second substrate and a plurality of second conductive features formed in second inter-metal dielectric layers over the second substrate. The stacked IC device also includes a conductive deep-interconnection-plug coupled between the first conductive features and the second conductive features. The conductive deep-interconnection-plug is isolated by dielectric block, the first inter-metal-dielectric layers and the second inter-metal-dielectric layers.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: February 27, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Ting Tsai, Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Chih-Hui Huang, Sheng-Chau Chen, Shih Pei Chou, Chia-Chieh Lin
  • Patent number: 11912642
    Abstract: Processes, catalysts and systems for preparing a composition comprising aliphatic, olefinic, cyclic and/or aromatic hydrocarbons of seven or greater carbon atoms per molecule are provided.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: February 27, 2024
    Assignee: KOCH TECHNOLOGY SOLUTIONS, LLC
    Inventors: William M. Cross, Jr., Daniel Travis Shay, Rui Chi Zhang, Feng Hao Zhang, Fang Zhang
  • Patent number: 11908878
    Abstract: An image sensor includes a pixel and an isolation structure. The pixel includes a photosensitive region and a circuitry region next to the photosensitive region. The isolation structure is located over the pixel, where the isolation structure includes a conductive grid and a dielectric structure covering a sidewall of the conductive grid, and the isolation structure includes an opening or recess overlapping the photosensitive region. The isolation structure surrounds a peripheral region of the photosensitive region.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: February 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Wen-Chang Kuo, Sheng-Chau Chen, Feng-Chi Hung, Sheng-Chan Li
  • Patent number: 11901387
    Abstract: A semiconductor device according to the present disclosure includes a semiconductor layer, a plurality of metal isolation features disposed in the semiconductor layer, a metal grid disposed directly over the plurality of metal isolation features, and a plurality of microlens features disposed over the metal grid.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Wen-Chang Kuo, Sheng-Chau Chen, Feng-Chi Hung, Sheng-Chan Li
  • Patent number: 11894410
    Abstract: Some embodiments relate an integrated circuit (IC) including a first substrate including a plurality of imaging devices. A second substrate is disposed under the first substrate and includes a plurality of logic devices. A first interconnect structure is disposed between the first substrate and the second substrate and electrically couples imaging devices within the first substrate to one another. A second interconnect structure is disposed between the first interconnect structure and the second substrate, and electrically couples logic devices within the second substrate to one another. A bond pad structure is coupled to a metal layer of the second interconnect structure and extends along inner sidewalls of both the first interconnect structure and the second interconnect structure. An oxide layer extends from above the first substrate to below a plurality of metal layers of the first interconnect structure, and lines inner sidewalls of the bond pad structure.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: February 6, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sin-Yao Huang, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Ming-Tsong Wang, Shih Pei Chou
  • Publication number: 20240030261
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor including a plurality of photodetectors disposed within a substrate. The photodetectors are disposed respectively within a plurality of pixel regions. A floating diffusion node is disposed along a front-side surface of the substrate at a middle region of the plurality of pixel regions. A plurality of well regions is disposed within the substrate at corners of the plurality of pixel regions. An isolation structure extends into a back-side surface of the substrate. The isolation structure comprises a plurality of elongated isolation components disposed between adjacent pixel regions, a middle isolation component aligned with the floating diffusion node, and multiple peripheral isolation components aligned with the plurality of well regions. The elongated isolation components have a first height and the middle and peripheral isolation components have a second height less than the first height.
    Type: Application
    Filed: January 5, 2023
    Publication date: January 25, 2024
    Inventors: Wen-I Hsu, Hsin-Hung Chen, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Wen-Chang Kuo
  • Publication number: 20240021643
    Abstract: Various embodiments of the present application are directed towards image sensors including composite backside illuminated (CBSI) structures to enhance performance. In some embodiments, a first trench isolation structure extends into a backside of a substrate to a first depth and comprises a pair of first trench isolation segments. A photodetector is in the substrate, between and bordering the first trench isolation segments. A second trench isolation structure is between the first trench isolation segments and extends into the backside of the substrate to a second depth less than the first depth. The second trench isolation structure comprises a pair of second trench isolation segments. An absorption enhancement structure overlies the photodetector, between the second trench isolation segments, and is recessed into the backside of the semiconductor substrate. The absorption enhancement structure and the second trench isolation structure collectively define a CBSI structure.
    Type: Application
    Filed: July 21, 2023
    Publication date: January 18, 2024
    Inventors: Wei Chuang Wu, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Jhy-Jyi Sze, Keng-Yu Chou, Yen-Ting Chiang, Ming-Hsien Yang, Chun-Yuan Chen
  • Publication number: 20240021641
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor. The image sensor comprise a substrate having a first region and a second region. A first gate overlies the first region. A second gate overlies the second region. A deep trench isolation (DTI) structure is in the substrate and laterally between the first region and the second region. A first floating diffusion node is in the first region. A second floating diffusion node is in the second region. An interlayer dielectric (ILD) structure is over the substrate. A dielectric structure is between the ILD structure and the substrate. The dielectric structure is laterally between the first and second floating diffusion nodes. The dielectric structure is laterally spaced from the first and second gates. The dielectric structure overlies the DTI structure. A width of the dielectric structure is greater than a width of the DTI structure.
    Type: Application
    Filed: January 4, 2023
    Publication date: January 18, 2024
    Inventors: Wei Long Chen, Wen-I Hsu, Feng-Chi Hung, Jen-Cheng Liu, Dun-Nian Yaung
  • Patent number: 11860266
    Abstract: A method of detecting a life includes receiving an echo signal including an in-phase component and a quadrature component, performing a preprocessing procedure on the echo signal to generate a preprocessed signal, generating, according to the preprocessed signal, complex conjugate data associated with the in-phase component and the quadrature component, performing a first time-domain-to-frequency-domain transform on the complex conjugate data to generate Doppler spectrogram data comprising a plurality of positive velocity energies and a plurality of negative velocity energies, generating combined Doppler spectrogram data according to the plurality of positive velocity energies and the plurality of negative velocity energies, performing a second time time-domain-to-frequency-domain transform on the combined Doppler spectrogram data to generate spectrum data, and determining whether a life is detected according to the spectrum data.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: January 2, 2024
    Assignee: RichWave Technology Corp.
    Inventors: Keng-Hao Liu, Han-Jieh Chang, Hsiang-Feng Chi
  • Publication number: 20230420464
    Abstract: The present disclosure relates to semiconductor device with a multi-gate structure. The semiconductor device includes a substrate and a doped region disposed within the substrate. A gate electrode is disposed over the doped region, and a source region and a drain region are disposed within the doped region. A shallow trench isolation (STI) structure is disposed within the substrate and laterally surrounds the source region and the drain region. A first doped liner is disposed along the STI structure, where the first doped liner separates the STI structure from the source region and the drain region. A second doped liner is disposed along the STI structure, where the second doped liner is separated from the first doped liner by the STI structure above a bottom surface of the STI structure.
    Type: Application
    Filed: June 23, 2022
    Publication date: December 28, 2023
    Inventors: Chih-Kuan Yu, Shen-Hui Hong, Feng-Chi Hung, Wen-I Hsu, Jen-Cheng Liu, Dun-Nian Yaung
  • Patent number: 11852519
    Abstract: An optical detection device of detecting a target container includes a linear light source, an optical sensor array and a processor. The linear light source is adapted to project a long strip illumination beam onto the target container. The optical sensor array includes a plurality of sensing units arranged as a long strip adapted to receive a long strip detection beam reflected from the target container. The processor is electrically connected to the optical sensor array. The processor is adapted to analyze intensity distribution of the plurality of sensing units to acquire a relative distance between the optical sensor array and a rim of the target container.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: December 26, 2023
    Assignee: PixArt Imaging Inc.
    Inventors: Feng-Chi Liu, Chi-Chieh Liao, Guo-Zhen Wang, Hung-Ching Lai
  • Publication number: 20230395631
    Abstract: An image sensor includes a pixel and an isolation structure. The pixel includes a photosensitive region and a circuitry region next to the photosensitive region. The isolation structure is located over the pixel, where the isolation structure includes a conductive grid and a dielectric structure covering a sidewall of the conductive grid, and the isolation structure includes an opening or recess overlapping the photosensitive region. The isolation structure surrounds a peripheral region of the photosensitive region.
    Type: Application
    Filed: August 9, 2023
    Publication date: December 7, 2023
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Wen-Chang Kuo, Sheng-Chau Chen, Feng-Chi Hung, Sheng-Chan Li
  • Publication number: 20230361143
    Abstract: Some embodiments are directed towards an image sensor device. A photodetector is disposed in a semiconductor substrate, and a transfer transistor is disposed over photodetector. The transfer transistor includes a transfer gate having a lateral portion extending over a frontside of the semiconductor substrate and a vertical portion extending to a first depth below the frontside of the semiconductor substrate. A gate dielectric separates the lateral portion and the vertical portion from the semiconductor substrate. A backside trench isolation structure extends from a backside of the semiconductor substrate to a second depth below the frontside of the semiconductor substrate. The backside trench isolation structure laterally surrounds the photodetector, and the second depth is less than the first depth such that a lowermost portion of the vertical portion of the transfer transistor has a vertical overlap with an uppermost portion of the backside trench isolation structure.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 9, 2023
    Inventors: Feng-Chi Hung, Dun-Nian Yaung, Jen-Cheng Liu, Wei Chuang Wu, Yen-Yu Chen, Chih-Kuan Yu
  • Publication number: 20230361085
    Abstract: In some embodiments, the present disclosure relates to an integrated chip structure. The integrated chip structure includes a first integrated chip (IC) tier and a second IC tier. The second IC tier comprises a second plurality of conductors within a second insulating structure disposed on the second semiconductor body. A conductive pad is electrically coupled to the second plurality of conductors and has a conductive surface available to a side of the second semiconductor body facing away from the first semiconductor body. The IC first tier contacts the second IC tier along a bonding interface including one or more conductive regions and one or more insulating regions. The one or more conductive regions laterally outside of a bottom surface of the conductive pad.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 9, 2023
    Inventors: Sin-Yao Huang, Chun-Chieh Chuang, Ching-Chun Wang, Sheng-Chau Chen, Dun-Nian Yaung, Feng-Chi Hung, Yung-Lung Lin
  • Publication number: 20230361149
    Abstract: In some embodiments, the present disclosure relates to a method for forming an image sensor and associated device structure. A backside deep trench isolation (BDTI) structure is formed in a substrate separating a plurality of pixel regions. The BDTI structure encloses a plurality of photodiodes and comprising a first BDTI component arranged at a crossroad of the plurality of pixel regions and a second BDTI component arranged at remaining peripheries of the plurality of pixel regions. The first BDTI component has a first depth from a backside of the substrate smaller than a second depth of the second BDTI component.
    Type: Application
    Filed: August 8, 2022
    Publication date: November 9, 2023
    Inventors: Hsin-Hung Chen, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Wen-Chang Kuo, Hung-Wen Hsu, Shih-Chang Liu
  • Patent number: 11804473
    Abstract: In some embodiments, the present disclosure relates to an integrated chip structure. The integrated chip structure includes a first plurality of interconnects arranged within a first inter-level dielectric (ILD) structure on a first substrate, and a second plurality of interconnects arranged within a second ILD structure between the first ILD structure and a second substrate. A bonding structure is disposed within a recess extending through the second substrate. A connector structure is vertically between the first plurality of interconnects and the second plurality of interconnects. The second plurality of interconnects include a first interconnect directly contacting the bonding structure. The second plurality of interconnects also include one or more extensions extending from directly below the first interconnect to laterally outside of the first interconnect and directly above the connector structure, as viewed along a cross-sectional view.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: October 31, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sin-Yao Huang, Chun-Chieh Chuang, Ching-Chun Wang, Sheng-Chau Chen, Dun-Nian Yaung, Feng-Chi Hung, Yung-Lung Lin