Patents by Inventor Feng Chi

Feng Chi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11342374
    Abstract: An image-sensor device is provided. The image-sensor device includes a semiconductor substrate and a radiation-sensing region in the semiconductor substrate. The image-sensor device also includes a doped isolation region in the semiconductor substrate and a dielectric film extending into the doped isolation region from a surface of the semiconductor substrate. A portion of the doped isolation region is between the dielectric film and the radiation-sensing region.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: May 24, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung
  • Patent number: 11342373
    Abstract: A method for manufacturing an image sensing device includes forming an interconnection layer over a front surface of a semiconductor substrate. A trench is formed to extend from a back surface of the semiconductor substrate. An etch stop layer is formed along the trench. A buffer layer is formed over the etch stop layer. An etch process is performed for etching the buffer layer. The buffer layer and the etch stop layer include different materials.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: May 24, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Chuang Wu, Ming-Tsong Wang, Feng-Chi Hung, Ching-Chun Wang, Jen-Cheng Liu, Dun-Nian Yaung
  • Publication number: 20220157864
    Abstract: Some embodiments relate an integrated circuit (IC) including a first substrate including a plurality of imaging devices. A second substrate is disposed under the first substrate and includes a plurality of logic devices. A first interconnect structure is disposed between the first substrate and the second substrate and electrically couples imaging devices within the first substrate to one another. A second interconnect structure is disposed between the first interconnect structure and the second substrate, and electrically couples logic devices within the second substrate to one another. A bond pad structure is coupled to a metal layer of the second interconnect structure and extends along inner sidewalls of both the first interconnect structure and the second interconnect structure. An oxide layer extends from above the first substrate to below a plurality of metal layers of the first interconnect structure, and lines inner sidewalls of the bond pad structure.
    Type: Application
    Filed: February 1, 2022
    Publication date: May 19, 2022
    Inventors: Sin-Yao Huang, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Ming-Tsong Wang, Shih Pei Chou
  • Patent number: 11335716
    Abstract: A photosensing pixel includes a substrate, a photosensing region, a floating diffusion region, a transfer gate and a control electrode. The photosensing region is located within the substrate. The floating diffusion region is located within the substrate aside the photosensing region. The transfer gate is disposed on the substrate and extending into the photosensing region. The control electrode is located on the substrate and extending into the floating diffusion region.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: May 17, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sin-Yao Huang, Feng-Chi Hung, Chen-Hsien Lin, Tzu-Hsuan Hsu, Yan-Chih Lu
  • Publication number: 20220120600
    Abstract: An optical detection device of detecting a target container includes a linear light source, an optical sensor array and a processor. The linear light source is adapted to project a long strip illumination beam onto the target container. The optical sensor array includes a plurality of sensing units arranged as a long strip adapted to receive a long strip detection beam reflected from the target container. The processor is electrically connected to the optical sensor array. The processor is adapted to analyze intensity distribution of the plurality of sensing units to acquire a relative distance between the optical sensor array and a rim of the target container.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 21, 2022
    Inventors: Feng-Chi Liu, Chi-Chieh Liao, Guo-Zhen Wang, Hung-Ching Lai
  • Publication number: 20220120850
    Abstract: A radar apparatus and a leakage correction method thereof are provided. The radar apparatus includes a transmitter and a receiver. The transmitter includes a sinewave signal generator. The sinewave signal generator generates a sinewave signal. The receiver includes another sinewave signal generator and a correcting circuit. The receiver receives transmitting signals including the sinewave signal from the transmitter. The sinewave signal generator of the receiver generates another sinewave signal according to the amplitude of the transmitting signals or received transmitting signals. The correcting circuit corrects leakage situation on the received transmitting signals according to another sinewave signal. The phasor of sinewave form corresponding to the leakage situation relates to the phasor of another sinewave signal. Accordingly, the performance of receiver may be improved effectively.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 21, 2022
    Applicant: RichWave Technology Corp.
    Inventors: Chiang-Hua Yeh, Hsiang-Feng Chi
  • Patent number: 11307287
    Abstract: A radar apparatus and a leakage correction method thereof are provided. The radar apparatus includes a transmitter and a receiver. The transmitter includes a sinewave signal generator. The sinewave signal generator generates a sinewave signal. The receiver includes another sinewave signal generator and a correcting circuit. The receiver receives transmitting signals including the sinewave signal from the transmitter. The sinewave signal generator of the receiver generates another sinewave signal according to the amplitude of the transmitting signals or received transmitting signals. The correcting circuit corrects leakage situation on the received transmitting signals according to another sinewave signal. The phasor of sinewave form corresponding to the leakage situation relates to the phasor of another sinewave signal. Accordingly, the performance of receiver may be improved effectively.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: April 19, 2022
    Assignee: RichWave Technology Corp.
    Inventors: Chiang-Hua Yeh, Hsiang-Feng Chi
  • Patent number: 11304271
    Abstract: A compound heating apparatus includes a microwave generating unit and an infrared radiation generator disposed in a casing outwardly of a heating chamber of the casing. A light shield is disposed around the infrared radiation generator, and has a shield opening facing toward the heating chamber. A microwave blocker plate covers the shield opening. An air supply module is connected to the light shield to blow air to the light shield for causing heat radiant energy generated from the infrared radiation generator to pass acceleratedly by forced heat convection through microwave blocking holes of the microwave block plate to the heating chamber.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: April 12, 2022
    Assignee: Food Industry Research and Development Institute
    Inventors: Feng-Chi Liu, Jia-Yan Hou, Binghuei-Barry Yang
  • Patent number: 11282802
    Abstract: A semiconductor device structure is provided, in some embodiments. The semiconductor device structure includes a semiconductor substrate having a first surface, a second surface, and sidewalls defining a recess that passes through the semiconductor substrate. The semiconductor device structure further includes an interconnect structure having one or more interconnect layers within a first dielectric structure that is disposed along the second surface. A conductive bonding structure is disposed within the recess and includes nickel. The conductive bonding structure has opposing outermost sidewalls that contact sidewalls of the interconnect structure.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: March 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hsien Yang, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Sin-Yao Huang
  • Patent number: 11271931
    Abstract: Techniques for securely generating and using a “fingerprint” for authentication. A server computer receives a first data set from a user device (including a first fuzzy hash of first user data on the user device). The server computer generates a first fingerprint value based on the first data set. The server computer detects an event corresponding to a user in association with the user device. The server computer identifies a baseline fingerprint value (generated based on a baseline fuzzy hash of user data on the user device). The server computer compares the first fingerprint value to the baseline fingerprint value to generate a similarity score. The server computer may determine that the similarity score exceeds a threshold value but does not represent an exact match, and, based on the similarity score, authenticate the user and update the baseline fingerprint value based on the first fingerprint value.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: March 8, 2022
    Assignee: Visa International Service Association
    Inventors: Vinjith Nagaraja, Nagaveera Venkata Su Tavvala, Jose Rios Trevino, Vamshi Ramarapu, Swapneel Mahajan, Joel Trunick, Shalini Mayor, James Myers, Raymond Brammer, Ireneusz Pazdzierniak, Shashi Velur, Feng Chi Wang, Vincent Hesener
  • Patent number: 11244981
    Abstract: Some embodiments relate an integrated circuit (IC). The IC includes a first substrate including an array of photodetectors, wherein a bond pad opening extends through the first substrate and is defined by an inner sidewall of the first substrate. An interconnect structure is disposed over the first substrate and includes a plurality of metal layers stacked over one another and disposed within a dielectric structure. The bond pad opening further extends through at least a portion of the interconnect structure and is further defined by an inner sidewall of the interconnect structure. A bond pad structure directly contacts a metal layer of the plurality of metal layers in the interconnect structure and is located at an uppermost extent of the bond pad opening.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: February 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sin-Yao Huang, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Ming-Tsong Wang, Shih Pei Chou
  • Publication number: 20220003837
    Abstract: An object recognition method includes generating Doppler spectrogram data according to an echo signal, the echo signal being relating to an object; transforming N sets of time-domain data of the Doppler spectrogram data corresponding to N velocities into N sets of cadence spectrogram data, respectively; combining the N sets of spectrogram data to obtain 1D/2D cadence spectrum data, and acquiring a series of cadence feature from the 1D/2D cadence spectrum data to recognize the object.
    Type: Application
    Filed: May 27, 2021
    Publication date: January 6, 2022
    Inventors: Wei-Min Liu, Po-Fu Wan, Han-Jieh Chang, Hsiang-Feng Chi
  • Patent number: 11211419
    Abstract: Various embodiments of the present application are directed towards image sensors including composite backside illuminated (CBSI) structures to enhance performance. In some embodiments, a first trench isolation structure extends into a backside of a substrate to a first depth and comprises a pair of first trench isolation segments. A photodetector is in the substrate, between and bordering the first trench isolation segments. A second trench isolation structure is between the first trench isolation segments and extends into the backside of the substrate to a second depth less than the first depth. The second trench isolation structure comprises a pair of second trench isolation segments. An absorption enhancement structure overlies the photodetector, between the second trench isolation segments, and is recessed into the backside of the semiconductor substrate. The absorption enhancement structure and the second trench isolation structure collectively define a CBSI structure.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: December 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei Chuang Wu, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Jhy-Jyi Sze, Keng-Yu Chou, Yen-Ting Chiang, Ming-Hsien Yang, Chun-Yuan Chen
  • Patent number: 11187784
    Abstract: A phase information extraction circuit includes a first mixer circuit for generating a second analog signal by mixing a carrier signal with a first analog signal generated by a transmitted signal reflected by the object, an analog-to-digital converter (ADC) coupled to the first mixer circuit for generating a first digital signal according to the second analog signal, an in-phase quadrature (I/Q) signal generator coupled to the ADC for generating a digital I signal and a digital Q signal according to the first digital signal, and a first phase acquisition unit for extracting phase information according to the digital I signal and the digital Q signal.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: November 30, 2021
    Assignee: RichWave Technology Corp.
    Inventor: Hsiang-Feng Chi
  • Publication number: 20210366956
    Abstract: Various embodiments of the present application are directed towards image sensors including composite backside illuminated (CBSI) structures to enhance performance. In some embodiments, a first trench isolation structure extends into a backside of a substrate to a first depth and comprises a pair of first trench isolation segments. A photodetector is in the substrate, between and bordering the first trench isolation segments. A second trench isolation structure is between the first trench isolation segments and extends into the backside of the substrate to a second depth less than the first depth. The second trench isolation structure comprises a pair of second trench isolation segments. An absorption enhancement structure overlies the photodetector, between the second trench isolation segments, and is recessed into the backside of the semiconductor substrate. The absorption enhancement structure and the second trench isolation structure collectively define a CBSI structure.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Inventors: Wei Chuang Wu, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Jhy-Jyi Sze, Keng-Yu Chou, Yen-Ting Chiang, Ming-Hsien Yang, Chun-Yuan Chen
  • Patent number: 11172548
    Abstract: A cooking apparatus for cooking ingredients packaged together in a package is provided. The cooking apparatus includes a cooking device and a barcode reader. The cooking device includes a housing defining a cooking room for accommodating the ingredients therein, a cooking unit for heating contents in the cooking room, and a control module electrically connected to the cooking unit for controlling operation of the cooking unit. The barcode reader is electrically connected to the control module, and scans a barcode on the package representing data related to information about the ingredients, decodes the barcode so as to obtain the data, and transmits the data to the control module that controls operation of the cooking unit based on the information.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: November 9, 2021
    Inventors: Binghuei-Barry Yang, Feng-Chi Liu, Pei-Wen Lo, Yao-Te Tsai, Yu-Chi Cheng
  • Publication number: 20210288029
    Abstract: In some embodiments, the present disclosure relates to an integrated chip structure. The integrated chip structure includes a first plurality of interconnects arranged within a first inter-level dielectric (ILD) structure on a first substrate, and a second plurality of interconnects arranged within a second ILD structure between the first ILD structure and a second substrate. A bonding structure is disposed within a recess extending through the second substrate. A connector structure is vertically between the first plurality of interconnects and the second plurality of interconnects. The second plurality of interconnects include a first interconnect directly contacting the bonding structure. The second plurality of interconnects also include one or more extensions extending from directly below the first interconnect to laterally outside of the first interconnect and directly above the connector structure, as viewed along a cross-sectional view.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 16, 2021
    Inventors: Sin-Yao Huang, Chun-Chieh Chuang, Ching-Chun Wang, Sheng-Chau Chen, Dun-Nian Yaung, Feng-Chi Hung, Yung-Lung Lin
  • Publication number: 20210280620
    Abstract: In some embodiments, a pixel sensor is provided. The pixel sensor includes a first photodetector arranged in a semiconductor substrate. A second photodetector is arranged in the semiconductor substrate, where a first substantially straight line axis intersects a center point of the first photodetector and a center point of the second photodetector. A floating diffusion node is arranged in the semiconductor substrate at a point that is a substantially equal distance from the first photodetector and the second photodetector. A pick-up well contact region is arranged in the semiconductor substrate, where a second substantially straight line axis that is substantially perpendicular to the first substantially straight line axis intersects a center point of the floating diffusion node and a center point of the pick-up well contact region.
    Type: Application
    Filed: May 5, 2021
    Publication date: September 9, 2021
    Inventors: Seiji Takahashi, Chen-Jong Wang, Dun-Nian Yaung, Feng-Chi Hung, Feng-Jia Shiu, Jen-Cheng Liu, Jhy-Jyi Sze, Chun-Wei Chang, Wei-Cheng Hsu, Wei Chuang Wu, Yimin Huang
  • Patent number: 11106476
    Abstract: A helper SDK embedded in a native application performs local operations on behalf of a web application affiliated with the helper SDK. The helper SDK may perform security functions such as fingerprint or face biometric verifications as well as access device-specific hardware such as a camera or secure memory. The web application may use an 0Auth technique for access and refresh tokens. In a transaction system, when a user is confirmed via the security function, order details are passed to the web application with a refresh token and ciphertext confirmation data is returned to the native application for completion of the transaction.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: August 31, 2021
    Assignee: VISA INTERNATIONAL SERVICE ASSOCATION
    Inventors: Vincent Hesener, Thomas Purves, Fayaz Mudnal, Anthony Kim, Feng Chi Wang
  • Publication number: 20210255302
    Abstract: A method of detecting a life includes receiving an echo signal including an in-phase component and a quadrature component, performing a preprocessing procedure on the echo signal to generate a preprocessed signal, generating, according to the preprocessed signal, complex conjugate data associated with the in-phase component and the quadrature component, performing a first time-domain-to-frequency-domain transform on the complex conjugate data to generate Doppler spectrogram data comprising a plurality of positive velocity energies and a plurality of negative velocity energies, generating combined Doppler spectrogram data according to the plurality of positive velocity energies and the plurality of negative velocity energies, performing a second time time-domain-to-frequency-domain transform on the combined Doppler spectrogram data to generate spectrum data, and determining whether a life is detected according to the spectrum data.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 19, 2021
    Inventors: Keng-Hao Liu, Han-Jieh Chang, Hsiang-Feng Chi