Patents by Inventor Fergus P. Quigley

Fergus P. Quigley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12133660
    Abstract: An ultrasonic electromechanical system for an ultrasonic surgical instrument may include an ultrasonic blade, a clamp arm disposed opposite the ultrasonic blade, an ultrasonic transducer configured to oscillate the ultrasonic blade in response to a drive signal, and a control circuit coupled to the ultrasonic transducer. The control circuit can be configured to determine a temperature of the ultrasonic blade, increase an amount of power of the drive signal when the temperature of the ultrasonic blade is less than a first predetermined value, and decrease the amount of power of the drive signal when the temperature of the ultrasonic blade is greater than a second predetermined value. The second predetermined value may be greater than the first predetermined value. An ultrasonic generator connectable to the ultrasonic electromechanical system may include the control circuit.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: November 5, 2024
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Fergus P. Quigley, Frederick E. Shelton, IV, Kevin L. Houser, David C. Yates, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme
  • Publication number: 20240358428
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating a state of an end effector of an ultrasonic device are disclosed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance is defined as Zg(t)=Vg(t)/Ig(t). The control circuit receives a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Application
    Filed: April 26, 2024
    Publication date: October 31, 2024
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita Singh Sawhney, Rafael J. Ruiz Ortiz, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell T. Rockman, Gregory D. Bishop, Frederick E. Shelton, IV, David C. Yates
  • Patent number: 12121256
    Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency. The control circuit controls the temperature of the ultrasonic blade based on the inferred temperature.
    Type: Grant
    Filed: April 6, 2023
    Date of Patent: October 22, 2024
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
  • Patent number: 12042207
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating a state of an end effector of an ultrasonic device are disclosed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance is defined as Z g ( t ) = V g ( t ) I g ( t ) . The control circuit receives a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Grant
    Filed: October 10, 2022
    Date of Patent: July 23, 2024
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita Singh Sawhney, Rafael J. Ruiz Ortiz, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell T. Rockman, Gregory D. Bishop, Frederick E. Shelton, IV, David C. Yates
  • Publication number: 20230355265
    Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
  • Publication number: 20230263548
    Abstract: A method for controlling an operation of an ultrasonic blade of an ultrasonic electromechanical system is disclosed. The method includes providing an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade via an ultrasonic waveguide; applying, by an energy source, a power level to the ultrasonic transducer; determining, by a control circuit coupled to a memory, a mechanical property of the ultrasonic electromechanical system; comparing, by the control circuit, the mechanical property with a reference mechanical property stored in the memory; and adjusting, by the control circuit, the power level applied to the ultrasonic transducer based on the comparison of the mechanical property with the reference mechanical property.
    Type: Application
    Filed: February 24, 2023
    Publication date: August 24, 2023
    Inventors: Frederick E. Shelton, IV, David C. Yates, Jason L. Harris, Kevin L. Houser, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black, Jeffrey D. Messerly, Fergus P. Quigley, Tamara S. Widenhouse
  • Publication number: 20230233245
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating a state of an end effector of an ultrasonic device are disclsoed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance is defined as Z g ( t ) = V g t I g t . The control circuit receivs a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Application
    Filed: October 10, 2022
    Publication date: July 27, 2023
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita Singh Sawhney, Rafael J. Ruiz Ortiz, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell T. Rockman, Gregory D. Bishop, Frederick E. Shelton, IV, David C. Yates
  • Patent number: 11701139
    Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency. The control circuit controls the temperature of the ultrasonic blade based on the inferred temperature.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: July 18, 2023
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
  • Patent number: 11589888
    Abstract: A method for controlling an operation of an ultrasonic blade of an ultrasonic electromechanical system is disclosed. The method includes providing an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade via an ultrasonic waveguide; applying, by an energy source, a power level to the ultrasonic transducer; determining, by a control circuit coupled to a memory, a mechanical property of the ultrasonic electromechanical system; comparing, by the control circuit, the mechanical property with a reference mechanical property stored in the memory; and adjusting, by the control circuit, the power level applied to the ultrasonic transducer based on the comparison of the mechanical property with the reference mechanical property.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: February 28, 2023
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, David C. Yates, Jason L. Harris, Kevin L. Houser, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black, Fergus P. Quigley, Tamara Widenhouse
  • Patent number: 11571234
    Abstract: A generator, ultrasonic device, and method of determining a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: February 7, 2023
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita Singh Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee, Frederick E. Shelton, IV, David C. Yates
  • Publication number: 20230000518
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating and controlling a state of an end effector of an ultrasonic device are disclosed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance as defined as Z g ( t ) = V g ( t ) I g ( t ) ; The control circuit receives a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Application
    Filed: June 7, 2022
    Publication date: January 5, 2023
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita S. Sawhney, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell T. Rockman, Gregory D. Bishop, Eric M. Roberson, Stephen M. Leuck, James M. Wilson
  • Publication number: 20220323095
    Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency.
    Type: Application
    Filed: February 9, 2022
    Publication date: October 13, 2022
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
  • Patent number: 11464532
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating and controlling a state of an end effector of an ultrasonic device are disclosed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance is defined as Z g ? ( t ) = V g ? ( t ) I g ? ( t ) . The control circuit receives a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: October 11, 2022
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita S. Sawhney, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell T. Rockman, Gregory D. Bishop, Eric M. Roberson, Stephen M. Leuck, James M. Wilson
  • Patent number: 11464559
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating a state of an end effector of an ultrasonic device are disclosed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance is defined as Z g ? ( t ) = V g ? ( t ) I g ? ( t ) . The control circuit receives a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 11, 2022
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita Singh Sawhney, Rafael J. Ruiz Ortiz, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Brian D. Black, Maxwell Rockman, Gregory D. Bishop, Frederick E. Shelton, IV, David C. Yates
  • Patent number: 11317937
    Abstract: Various systems and methods for determining the state of an end effector of an ultrasonic surgical instrument are disclosed. A control circuit can be configured to measure a complex impedance of an ultrasonic electromechanical system including an ultrasonic blade and compare the measured complex impedance to reference complex impedance patterns that each correspond to a state of the end effector. Accordingly, the control circuit can further be configured to determine the state of the end effector according to which of the plurality of reference complex impedance patterns the measured complex impedance corresponds.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: May 3, 2022
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Fergus P. Quigley, Alexander R. Cuti, Matthew S. Schneider, Maxwell Rockman, Gregory D. Bishop
  • Patent number: 11259830
    Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: March 1, 2022
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
  • Patent number: 11100631
    Abstract: A surgical image acquisition system includes multiple illumination sources, each source emitting light at a specified wavelength, a light sensor to receive light reflected from a tissue sample illuminated by each of the illumination sources, and a computing system. The computer system may receive data from the light sensor when the tissue sample is illuminated by the illumination sources, determine a depth of a structure within the tissue sample, and calculate visualization data regarding the structure and its depth within the tissue. The visualization data may have a format for use by a display system. The structure may include vascular tissue. The illumination sources may include red, green, blue, infrared, ultraviolet, and white light sources. The structure depth may be determined by a spectroscopy method or a Doppler shift method. The system may include a controller and computer enabled instructions to accomplish the above.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 24, 2021
    Assignee: Cilag GmbH International
    Inventors: David C. Yates, Fergus P. Quigley, Frederick E. Shelton, IV, Jason L. Harris, Tamara Widenhouse
  • Publication number: 20210177452
    Abstract: An ultrasonic electromechanical system for an ultrasonic electromechanical system may include an ultrasonic blade, a clamp arm disposed opposite the ultrasonic blade, an ultrasonic transducer acoustically coupled to the ultrasonic blade, in which the ultrasonic transducer is configured to oscillate the ultrasonic blade in response to a drive signal, and a control circuit coupled to the ultrasonic transducer. The control circuit can be configured to determine a position of a tissue clamped between the ultrasonic blade and the clamp arm, and control an amount of power of the drive signal based at least in part on the position of the tissue.
    Type: Application
    Filed: December 21, 2020
    Publication date: June 17, 2021
    Inventors: Cameron R. Nott, Fergus P. Quigley, Frederick E. Shelton, IV, Kevin L. Houser, David C. Yates, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme
  • Publication number: 20210153889
    Abstract: An ultrasonic electromechanical system for an ultrasonic surgical instrument may include an ultrasonic blade, a clamp arm disposed opposite the ultrasonic blade, an ultrasonic transducer configured to oscillate the ultrasonic blade in response to a drive signal, and a control circuit coupled to the ultrasonic transducer. The control circuit can be configured to determine a temperature of the ultrasonic blade, increase an amount of power of the drive signal when the temperature of the ultrasonic blade is less than a first predetermined value, and decrease the amount of power of the drive signal when the temperature of the ultrasonic blade is greater than a second predetermined value. The second predetermined value may be greater than the first predetermined value. An ultrasonic generator connectable to the ultrasonic electromechanical system may include the control circuit.
    Type: Application
    Filed: December 21, 2020
    Publication date: May 27, 2021
    Inventors: Cameron R. Nott, Fergus P. Quigley, Frederick E. Shelton, IV, Kevin L. Houser, David C. Yates, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme
  • Publication number: 20190274716
    Abstract: Various systems and methods for determining the state of an end effector of an ultrasonic surgical instrument are disclosed. A control circuit can be configured to measure a complex impedance of an ultrasonic electromechanical system including an ultrasonic blade and compare the measured complex impedance to reference complex impedance patterns that each correspond to a state of the end effector. Accordingly, the control circuit can further be configured to determine the state of the end effector according to which of the plurality of reference complex impedance patterns the measured complex impedance corresponds.
    Type: Application
    Filed: August 28, 2018
    Publication date: September 12, 2019
    Inventors: Cameron R. Nott, Fergus P. Quigley, Alexander R. Cuti, Matthew S. Schneider, Maxwell Rockman, Gregory D. Bishop