Patents by Inventor Fergus P. Quigley

Fergus P. Quigley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190201042
    Abstract: Various systems and methods for determining the state of an ultrasonic electromechanical system are disclosed. A control circuit can be configured to monitor the change in resonant frequency of an ultrasonic electromechanical system of the ultrasonic surgical instrument as the ultrasonic blade oscillates and determine the state or change in state of the ultrasonic electromechanical system accordingly. The change in state of the ultrasonic electromechanical system can include, for example, the change in temperature of the system. In some aspects, the control circuit can be configured to modify the operation of the ultrasonic electromechanical system or other operational parameters of the ultrasonic surgical instrument according to the state or change in state of the system.
    Type: Application
    Filed: August 28, 2018
    Publication date: July 4, 2019
    Inventors: Cameron R. Nott, Fergus P. Quigley, Frederick E. Shelton, IV, Kevin L. Houser, David C. Yates, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme
  • Publication number: 20190201046
    Abstract: A method for controlling an operation of an ultrasonic blade of an ultrasonic electromechanical system is disclosed. The method includes providing an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade via an ultrasonic waveguide; applying, by an energy source, a power level to the ultrasonic transducer; determining, by a control circuit coupled to a memory, a mechanical property of the ultrasonic electromechanical system; comparing, by the control circuit, the mechanical property with a reference mechanical property stored in the memory; and adjusting, by the control circuit, the power level applied to the ultrasonic transducer based on the comparison of the mechanical property with the reference mechanical property.
    Type: Application
    Filed: December 4, 2018
    Publication date: July 4, 2019
    Inventors: Frederick E. Shelton, IV, David C. Yates, Jason L. Harris, Kevin L. Houser, Foster B. Stulen, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black, Jeffrey D. Messerly, Fergus P. Quigley, Tamara Widenhouse
  • Publication number: 20190201036
    Abstract: A generator, ultrasonic device, and method of determining a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency.
    Type: Application
    Filed: August 28, 2018
    Publication date: July 4, 2019
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita Singh Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee, Frederick E. Shelton, IV, David C. Yates
  • Patent number: 7214241
    Abstract: A modular elongated stent having an overlap region where two modular components fit together, the overlap region being relatively stiff as compared to another more flexible region of the stent when the stent is in an assembled configuration, the stent further comprising a mimic region that has a stiffness essentially equivalent to the stiffness of the overlap region, to provide kink resistance. A stent having such a mimic region or otherwise stiff region and a flexible region may have a transition region between the stiff and flexible regions, such as a bridging material attached to the stent, also to provide kink resistance. A stent may have relatively stiff regions and relatively flexible regions positioned to align the flexible regions with curved regions of a body lumen when deployed within the body lumen.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: May 8, 2007
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: David J. Zarbatany, Ari Moskowitz, Fergus P. Quigley, Lukas J. Hijlkema
  • Publication number: 20040106981
    Abstract: A modular elongated stent having an overlap region where two modular components fit together, the overlap region being relatively stiff as compared to another more flexible region of the stent when the stent is in an assembled configuration, the stent further comprising a mimic region that has a stiffness essentially equivalent to the stiffness of the overlap region, to provide kink resistance. A stent having such a mimic region or otherwise stiff region and a flexible region may have a transition region between the stiff and flexible regions, such as a bridging material attached to the stent, also to provide kink resistance. A stent may have relatively stiff regions and relatively flexible regions positioned to align the flexible regions with curved regions of a body lumen when deployed within the body lumen.
    Type: Application
    Filed: July 2, 2003
    Publication date: June 3, 2004
    Inventors: David J. Zarbatany, Ari Moskowitz, Fergus P. Quigley, Lukas J. Hijlkema
  • Patent number: 6610087
    Abstract: A modular elongated stent having an overlap region where two modular components fit together, the overlap region being relatively stiff as compared to another more flexible region of the stent when the stent is in an assembled configuration, the stent further comprising a mimic region that has a stiffness essentially equivalent to the stiffness of the overlap region, to provide kink resistance. A stent having such a mimic region or otherwise stiff region and a flexible region may have a transition region between the stiff and flexible regions, such as a bridging material attached to the stent, also to provide kink resistance. A stent may have relatively stiff regions and relatively flexible regions positioned to align the flexible regions with curved regions of a body lumen when deployed within the body lumen.
    Type: Grant
    Filed: November 16, 1999
    Date of Patent: August 26, 2003
    Assignee: SciMed Life Systems, Inc.
    Inventors: David J. Zarbatany, Ari Moskowitz, Fergus P. Quigley, Lukas J. Hijlkema