Patents by Inventor Forrest A. James

Forrest A. James has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170222603
    Abstract: A regenerative selective logarithmic detector amplifier (LDA) can have integrated FM demodulation capabilities. It can receive a wired or wireless FM modulated signal and amplify or demodulate it with high sensitivity, high skirt ratio and minimized noise when compared to the prior art. When used in conjunction with other circuits such as a PLL or mixer, it can improve interference rejection and frequency selectivity and be locked on a precise channel in frequency and phase. The LDA produces intermittent oscillations that are self-quenched when reaching a given threshold. It also embeds the circuitry to perform direct FM discrimination. FM demodulation process is completed by a simple analog or digital frequency to voltage converter. This plus the fact that the instantaneous regeneration gain is low-medium permit to detect signals of small amplitudes buried in the noise.
    Type: Application
    Filed: April 21, 2017
    Publication date: August 3, 2017
    Inventors: Forrest James BROWN, Patrick Antoine RADA, Alexandre DUPUY
  • Publication number: 20170214430
    Abstract: Systems and methods for improving data communication over less than perfect power lines or transmission lines are described. The systems and methods allow for pushing out electrically any null within a frequency range of interest and/or for lossless transmission by providing impedance matching between communication devices and the transmission line. This is achieved by implementing line equalizing modules within the transceivers, at the transmitter side and/or the receiver side, or by plugging, as a stand-alone module, into an electrical outlet within a building. The line equalizing module includes multiple inductor-capacitor cells coupled in cascade where multiple switches allow for selective and concurrent connection between the inductor-capacitor cells. In another embodiment, the line equalizing module includes variable inductor-capacitor cells. The line equalizing module provides a variable propagation delay that allows for stretching electrically the transmission line.
    Type: Application
    Filed: March 31, 2017
    Publication date: July 27, 2017
    Inventors: Forrest James BROWN, Alexandre DUPUY, Patrick Antoine RADA
  • Publication number: 20170187337
    Abstract: A logarithmic detector amplifying (LDA) system is provided for use as a high sensitivity receive booster or replacement for a low noise amplifier in a receive chain of a communication device. The LDA system includes an amplifying circuit configured to receive an input signal having a first frequency and generate an oscillation based on the input signal, a sampling circuit coupled to the amplifying circuit and configured to terminate the oscillation based on a predetermined threshold to periodically clamp and restart the oscillation to generate a series of pulses modulated by the oscillation and by the input signal, and one or more metamaterial (“MTM”) resonant circuits coupled in shunt with an RF path that couples the amplifying circuit in series and configured to establish a frequency of operation and a phase response to output a signal having RF frequencies with a ultra-wide bandwidth.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Inventors: Alexandre DUPUY, Forrest James BROWN, Richard OLESCO, Grant KUMATAKA
  • Patent number: 9590572
    Abstract: A logarithmic detector amplifying (LDA) system is provided for use as a high sensitivity receive booster or replacement for a low noise amplifier in a receive chain of a communication device. The LDA system includes an amplifying circuit configured to receive an input signal having a first frequency and generate an oscillation based on the input signal, a sampling circuit coupled to the amplifying circuit and configured to terminate the oscillation based on a predetermined threshold to periodically clamp and restart the oscillation to generate a series of pulses modulated by the oscillation and by the input signal, and one or more resonant circuits coupled with the amplifying circuit and configured to establish a frequency of operation and to generate an output signal having a second frequency, the second frequency being substantially the same as the first frequency.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: March 7, 2017
    Assignee: DOCKON AG
    Inventors: Patrick Antoine Rada, Forrest James Brown, Alexandre Dupuy
  • Publication number: 20170062932
    Abstract: An antenna system is provided, including a first antenna, a second antenna, a ground plane, and a resonant isolator located proximate to the first antenna and the second antenna. The resonant isolator is coupled to the ground plane at or proximate to one current null point created by a first antenna and at or proximate to a second current null point created by a second antenna, and is configured to isolate the first antenna from the second antenna at a resonance. In some cases, the resonant isolator may include at least two conductive portions that may be substantially parallel to one another. The resonant isolator may also include an active tuning element that may change the resonance at which the resonant isolator de-couples the two antennas. In some cases, each of the antennas may be a capacitively-coupled compound loop antenna.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Inventors: Matthew Robert FOSTER, Jonathan Neil BRINGUIER, Ryan James ORSI, Forrest James BROWN, Alexandre DUPUY
  • Patent number: 9551627
    Abstract: Various examples are provided for dynamic simulation of wind velocity and pressure. In one embodiment, among others, a dynamic wind simulator includes a fan and a fast-acting damper connected to an inlet of the fan. The fast-acting damper configured to modulate airflow provided by the fan at frequencies up to 10 Hz. In another embodiment, a system includes a fan and an air outlet path of the fan connected to a testing assembly configured to support a specimen for testing. An air inlet path of the fan includes a fast-acting damper configured to modulate airflow provided by the fan to the testing assembly at frequencies up to 10 Hz. The testing assembly may include a pressure chamber and/or a test section.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 24, 2017
    Assignees: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC., SPECIAL-LITE, INC.
    Inventors: Forrest James Masters, Henry L. Upjohn, II, Kenneth R. Bowditch, James Paul Jesteadt, Yan Shen, Cedric Adam, Bob Nicholson
  • Publication number: 20160218683
    Abstract: A logarithmic detector amplifying (LDA) system is provided for use as a high sensitivity receive booster or replacement for a low noise amplifier in a receive chain of a communication device. The LDA system may include an amplifying circuit configured to receive an input signal having a first frequency and generate an oscillation based on the input signal, a sampling circuit coupled to the amplifying circuit and configured to terminate the oscillation based on a predetermined threshold to generate a series of modulated pulses, and one or more resonant circuits including at least one variable capacitor, coupled with the amplifying circuit and configured to establish a frequency of operation and generate an output signal having a second frequency being substantially the same as the first frequency, with the operating frequency being adjustable in response to baseband information received from the system via the one or more variable capacitors.
    Type: Application
    Filed: March 31, 2016
    Publication date: July 28, 2016
    Inventors: Patrick Antoine RADA, Forrest James BROWN, Alexandre DUPUY
  • Patent number: 9252487
    Abstract: Embodiments provide single-sided and multi-layered circular polarized, self-contained, compound loop antennas (circular polarized CPL). Embodiments of the CPL antennas produce circular polarized signals by using two electric field radiators physically oriented orthogonal to each other, and by ensuring that the two electric field radiators are positioned such that an electrical delay between the two electric field radiators results in the two electric field radiators emitting their respective electric fields out of phase. Ensuring the proper electrical delay between the two electric field radiators also maintains high efficiency of the antenna and it improves the axial ratio of the antenna.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: February 2, 2016
    Assignee: DOCKON AG
    Inventors: Forrest James Brown, Ryan James Orsi, Matthew Robert Foster
  • Publication number: 20150070058
    Abstract: A logarithmic detector amplifying (LDA) system is provided for use as a high sensitivity receive booster or replacement for a low noise amplifier in a receive chain of a communication device. The LDA system includes an amplifying circuit configured to receive an input signal having a first frequency and generate an oscillation based on the input signal, a sampling circuit coupled to the amplifying circuit and configured to terminate the oscillation based on a predetermined threshold to periodically clamp and restart the oscillation to generate a series of pulses modulated by the oscillation and by the input signal, and one or more resonant circuits coupled with the amplifying circuit and configured to establish a frequency of operation and to generate an output signal having a second frequency, the second frequency being substantially the same as the first frequency.
    Type: Application
    Filed: March 17, 2014
    Publication date: March 12, 2015
    Inventors: Patrick Antoine Rada, Forrest James Brown, Alexandre Dupuy
  • Publication number: 20150070093
    Abstract: A logarithmic detector amplifying (LDA) system is provided for use as a high sensitivity receive booster or replacement for a low noise amplifier in a receive chain of a communication device. The LDA system includes an amplifying circuit configured to receive an input signal having a first frequency and generate an oscillation based on the input signal, a sampling circuit coupled to the amplifying circuit and configured to terminate the oscillation based on a predetermined threshold to periodically clamp and restart the oscillation to generate a series of pulses modulated by the oscillation and by the input signal, and one or more resonant circuits coupled with the amplifying circuit and configured to establish a frequency of operation and to generate an output signal having a second frequency, the second frequency being substantially the same as the first frequency.
    Type: Application
    Filed: March 14, 2014
    Publication date: March 12, 2015
    Applicant: DockOn AG
    Inventors: Patrick Antoine Rada, Forrest James Brown, Alexandre Dupuy
  • Patent number: 8654021
    Abstract: Embodiments provide multi-band, compound loop antennas (multi-band antennas). Embodiments of the multi-band antennas produce signals at two or more frequency bands, with the two or more frequency bands capable of being adjusted and tuned independently of each other. Embodiments of a multi-band antenna are comprised of at least one electric field radiator and at least one monopole formed out of the magnetic loop. At a particular frequency, the at least one electric field radiator in combination with various portions of the magnetic loop resonate and radiate an electric field at a first frequency band. At yet another particular frequency, the at least one monopole in combination with various portions of the magnetic loop resonate and radiate an electric field at a second frequency band. The shape of the magnetic loop can be tuned to increase the radiation efficiency at particular frequency bands and enable the multi-band operation of antenna embodiments.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: February 18, 2014
    Assignee: Dockon AG
    Inventors: Forrest James Brown, Ryan James Orsi, Matthew Robert Foster
  • Patent number: 8654022
    Abstract: Embodiments provide multi-band, compound loop antennas (multi-band antennas). Embodiments of the multi-band antennas produce signals at two or more frequency bands, with the two or more frequency bands capable of being adjusted and tuned independently of each other. Embodiments of a multi-band antenna are comprised of at least one electric field radiator and at least one monopole formed out of the magnetic loop. At a particular frequency, the at least one electric field radiator in combination with various portions of the magnetic loop resonate and radiate an electric field at a first frequency band. At yet another particular frequency, the at least one monopole in combination with various portions of the magnetic loop resonate and radiate an electric field at a second frequency band. The shape of the magnetic loop can be tuned to increase the radiation efficiency at particular frequency bands and enable the multi-band operation of antenna embodiments.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: February 18, 2014
    Assignee: Dockon AG
    Inventors: Forrest James Brown, Ryan James Orsi, Matthew Robert Foster
  • Patent number: 8654023
    Abstract: Embodiments provide multi-band, compound loop antennas (multi-band antennas). Embodiments of the multi-band antennas produce signals at two or more frequency bands, with the two or more frequency bands capable of being adjusted and tuned independently of each other. Embodiments of a multi-band antenna are comprised of at least one electric field radiator and at least one monopole formed out of the magnetic loop. At a particular frequency, the at least one electric field radiator in combination with various portions of the magnetic loop resonate and radiate an electric field at a first frequency band. At yet another particular frequency, the at least one monopole in combination with various portions of the magnetic loop resonate and radiate an electric field at a second frequency band. The shape of the magnetic loop can be tuned to increase the radiation efficiency at particular frequency bands and enable the multi-band operation of antenna embodiments.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: February 18, 2014
    Assignee: Dockon AG
    Inventors: Forrest James Brown, Ryan James Orsi, Matthew Robert Foster
  • Publication number: 20140022142
    Abstract: Embodiments provide single-sided and multi-layered circular polarized, self-contained, compound loop antennas (circular polarized CPL). Embodiments of the CPL antennas produce circular polarized signals by using two electric field radiators physically oriented orthogonal to each other, and by ensuring that the two electric field radiators are positioned such that an electrical delay between the two electric field radiators results in the two electric field radiators emitting their respective electric fields out of phase. Ensuring the proper electrical delay between the two electric field radiators also maintains high efficiency of the antenna and it improves the axial ratio of the antenna.
    Type: Application
    Filed: January 18, 2012
    Publication date: January 23, 2014
    Applicant: DockOn AG
    Inventors: Forrest James Brown, Ryan James Orsi, Matthew Robert Foster
  • Patent number: 8462061
    Abstract: The present invention relates to printed or single-sided compound field antennas. The single-sided compound loop antennas have coplanar electric field radiators and magnetic loops with electric fields orthogonal to magnetic fields that achieve performance benefits in higher bandwidth (lower Q), greater radiation intensity/power/gain, and greater efficiency.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: June 11, 2013
    Assignee: Dockon AG
    Inventor: Forrest James Brown
  • Publication number: 20130068045
    Abstract: Various examples are provided for dynamic simulation of wind velocity and pressure. In one embodiment, among others, a dynamic wind simulator includes a fan and a fast-acting damper connected to an inlet of the fan. The fast-acting damper configured to modulate airflow provided by the fan at frequencies up to 10 Hz. In another embodiment, a system includes a fan and an air outlet path of the fan connected to a testing assembly configured to support a specimen for testing. An air inlet path of the fan includes a fast-acting damper configured to modulate airflow provided by the fan to the testing assembly at frequencies up to 10 Hz. The testing assembly may include a pressure chamber and/or a test section.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 21, 2013
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Forrest James Masters, Henry L. Upjohn, II, Kenneth R. Bowditch, James Paul Jesteadt, Yan Shen, Cedric Adam, Bob Nicholson
  • Publication number: 20130057442
    Abstract: Embodiments provide multi-band, compound loop antennas (multi-band antennas). Embodiments of the multi-band antennas produce signals at two or more frequency bands, with the two or more frequency bands capable of being adjusted and tuned independently of each other. Embodiments of a multi-band antenna are comprised of at least one electric field radiator and at least one monopole formed out of the magnetic loop. At a particular frequency, the at least one electric field radiator in combination with various portions of the magnetic loop resonate and radiate an electric field at a first frequency band. At yet another particular frequency, the at least one monopole in combination with various portions of the magnetic loop resonate and radiate an electric field at a second frequency band. The shape of the magnetic loop can be tuned to increase the radiation efficiency at particular frequency bands and enable the multi-band operation of antenna embodiments.
    Type: Application
    Filed: February 22, 2012
    Publication date: March 7, 2013
    Applicant: DockOn AG
    Inventors: Forrest James Brown, Ryan James Orsi, Matthew Robert Foster
  • Publication number: 20130057441
    Abstract: Embodiments provide multi-band, compound loop antennas (multi-band antennas). Embodiments of the multi-band antennas produce signals at two or more frequency bands, with the two or more frequency bands capable of being adjusted and tuned independently of each other. Embodiments of a multi-band antenna are comprised of at least one electric field radiator and at least one monopole formed out of the magnetic loop. At a particular frequency, the at least one electric field radiator in combination with various portions of the magnetic loop resonate and radiate an electric field at a first frequency band. At yet another particular frequency, the at least one monopole in combination with various portions of the magnetic loop resonate and radiate an electric field at a second frequency band. The shape of the magnetic loop can be tuned to increase the radiation efficiency at particular frequency bands and enable the multi-band operation of antenna embodiments.
    Type: Application
    Filed: February 22, 2012
    Publication date: March 7, 2013
    Applicant: DOCKON AG
    Inventors: Forrest James Brown, Ryan James Orsi, Matthew Robert Foster
  • Publication number: 20130057440
    Abstract: Embodiments provide multi-band, compound loop antennas (multi-band antennas). Embodiments of the multi-band antennas produce signals at two or more frequency bands, with the two or more frequency bands capable of being adjusted and tuned independently of each other. Embodiments of a multi-band antenna are comprised of at least one electric field radiator and at least one monopole formed out of the magnetic loop. At a particular frequency, the at least one electric field radiator in combination with various portions of the magnetic loop resonate and radiate an electric field at a first frequency band. At yet another particular frequency, the at least one monopole in combination with various portions of the magnetic loop resonate and radiate an electric field at a second frequency band. The shape of the magnetic loop can be tuned to increase the radiation efficiency at particular frequency bands and enable the multi-band operation of antenna embodiments.
    Type: Application
    Filed: February 22, 2012
    Publication date: March 7, 2013
    Applicant: DOCKON AG
    Inventors: Forrest James Brown, Ryan James Orsi, Matthew Robert Foster
  • Patent number: 8368485
    Abstract: Embodiments are directed to a RF combiner/splitter having a first port separated from a second port and a third port by a generally tapering microstrip section. The second and third ports are separated by a generally rectangular bridge bar having a width selected to match the impedance of devices to be connected to the second and third ports and a length selected to provide a separation between the second and third ports of approximately quarter wavelength at a center point of an operational frequency of the devices. In a first embodiment, a horizontal RF choke joint is positioned between the first port and the tapering section. In a second embodiment, one choke joint is positioned between the second port and the bridge bar and a second choke joint is positioned between the third port and the bridge bar.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: February 5, 2013
    Assignee: Dockon AG
    Inventor: Forrest James Brown