Patents by Inventor Francisco Javier Santos Rodriguez

Francisco Javier Santos Rodriguez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12272738
    Abstract: A method includes: providing a layer of porous silicon carbide supported by a silicon carbide substrate; providing a layer of epitaxial silicon carbide on the layer of porous silicon carbide; forming semiconductor devices in the layer of epitaxial silicon carbide; and separating the silicon carbide substrate from the layer of epitaxial silicon carbide at the layer of porous silicon carbide. The layer of porous silicon carbide includes dopants defining a resistivity of the layer of porous silicon carbide. The resistivity of the layer of porous silicon carbide is different from a resistivity of the silicon carbide substrate. Additional methods are described.
    Type: Grant
    Filed: July 13, 2023
    Date of Patent: April 8, 2025
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Roland Rupp, Francisco Javier Santos Rodriguez
  • Publication number: 20250096149
    Abstract: A semiconductor device includes a single-crystalline silicon carbide portion with a first surface, an opposite second surface, and a third surface extending from the first surface in a direction of the second surface. Along the third surface, hydrogen atoms and/or atoms of one or more nonmetal elements other than silicon and having an atomic number greater than six saturate dangling bonds of the silicon carbide portion and/or a passivating coating is in direct contact with the third surface. The semiconductor device further includes a glass structure and an interface layer structure between the third surface and the glass structure.
    Type: Application
    Filed: September 16, 2024
    Publication date: March 20, 2025
    Inventors: Rudolf Elpelt, Francisco Javier Santos Rodriguez, Bernd Zippelius, Antonio Vellei, Alexander Breymesser
  • Patent number: 12249504
    Abstract: pa The method of processing a semiconductor wafer includes forming one or more epitaxial layers over its first main surface. It also involves forming one or more porous layers within the semiconductor wafer or within the epitaxial layers. Together, the semiconductor wafer, the epitaxial layer(s), and the porous layer(s) form a substrate. Next, doped regions of a semiconductor device are formed within the epitaxial layer(s). After forming these doped regions, a non-porous part of the semiconductor wafer is separated from the rest of the substrate along the porous layer(s).
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: March 11, 2025
    Assignee: Infineon Technologies AG
    Inventors: Bernhard Goller, Alexander Christian Binter, Tobias Hoechbauer, Martin Huber, Iris Moder, Matteo Piccin, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze
  • Patent number: 12211703
    Abstract: A method of forming a semiconductor device includes: forming a first semiconductor layer on a semiconductor substrate, the first semiconductor layer being of the same dopant type as the semiconductor substrate, the first semiconductor layer having a higher dopant concentration than the semiconductor substrate; increasing the porosity of the first semiconductor layer; first annealing the first semiconductor layer in an atmosphere including an inert gas; forming a second semiconductor layer on the first semiconductor layer; and separating the second semiconductor layer from the semiconductor substrate by splitting within the first semiconductor layer. Additional methods of forming a semiconductor device are described.
    Type: Grant
    Filed: August 22, 2023
    Date of Patent: January 28, 2025
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Alexander Breymesser, Bernhard Goller, Matthias Kuenle, Helmut Oefner, Francisco Javier Santos Rodriguez, Stephan Voss
  • Publication number: 20250006814
    Abstract: A method for forming an interface layer on a silicon carbide body comprises removing an oxide layer from a surface of a silicon carbide body to obtain a silicon carbide surface. The silicon carbide body comprises a source region of a first conductivity type and a body region of a second conductivity type. The method further comprises after removing the oxide layer, depositing an interface layer directly on the silicon carbide surface. The interface layer has a thickness of less or equal to 15 nm. The method further comprises forming an electrical insulator over the interface layer, and forming a gate electrode over the electrical insulator.
    Type: Application
    Filed: June 27, 2024
    Publication date: January 2, 2025
    Inventors: Wolfgang LEHNERT, Fabian RASINGER, Thomas AICHINGER, Gerald RESCHER, Francisco Javier SANTOS RODRIGUEZ, Carsten SCHAEFFER, Armin TILKE
  • Publication number: 20240405092
    Abstract: There is described a semiconductor device comprising an SiC body with a gate structure comprising a gate dielectric with a specific multilayer laminate structure including alternating layers of a first dielectric material and of a second dielectric material having a dielectric constant of 4 or higher. There is further described a method for manufacturing such a semiconductor device including an SiC body as mentioned before.
    Type: Application
    Filed: May 15, 2024
    Publication date: December 5, 2024
    Inventors: Armin TILKE, Sandra KRAUSE, Thomas AICHINGER, Wolfgang LEHNERT, Francisco Javier SANTOS RODRIGUEZ
  • Patent number: 12033972
    Abstract: A method of forming an electrical contact is provided. The method may include depositing, by atomic layer deposition, a passivation layer over at least a region of a metal surface, wherein the passivation layer may include aluminum oxide, and electrically contacting the region of the metal surface with a metal contact structure, wherein the metal contact structure may include copper.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: July 9, 2024
    Assignee: Infineon Technologies AG
    Inventors: Joachim Mahler, Michael Bauer, Jochen Dangelmaier, Reimund Engl, Johann Gatterbauer, Frank Hille, Michael Huettinger, Werner Kanert, Heinrich Koerner, Brigitte Ruehle, Francisco Javier Santos Rodriguez, Antonio Vellei
  • Patent number: 12034066
    Abstract: A power semiconductor device includes: a drift region; a plurality of IGBT cells each having a plurality of trenches extending into the drift region along a vertical direction and laterally confining at least one active mesa which includes an upper section of the drift region; and an electrically floating barrier region of an opposite conductivity type as the drift region and spatially confined, in and against the vertical direction, by the drift region. A total volume of all active mesas is divided into first and second shares, the first share not laterally overlapping with the barrier region and the second share laterally overlapping with the barrier region. The first share carries the load current at least within a range of 0% to 100% of a nominal load current. The second share carries the load current if the load current exceeds at least 0.5% of the nominal load current.
    Type: Grant
    Filed: February 21, 2023
    Date of Patent: July 9, 2024
    Assignee: Infineon Technologies AG
    Inventors: Antonio Vellei, Markus Beninger-Bina, Matteo Dainese, Christian Jaeger, Johannes Georg Laven, Alexander Philippou, Francisco Javier Santos Rodriguez
  • Patent number: 11990520
    Abstract: A method of manufacturing a semiconductor device includes: providing a silicon carbide substrate that includes device regions and a grid-shaped kerf region laterally separating the device regions; forming a mold structure on a backside surface of the grid-shaped kerf region; forming backside metal structures on a backside surface of the device regions; and separating the device regions, wherein parts of the mold structure form frame structures laterally surrounding the backside metal structures.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: May 21, 2024
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Andre Brockmeier, Guenter Denifl, Ronny Kern, Michael Knabl, Matteo Piccin, Francisco Javier Santos Rodriguez
  • Publication number: 20240153759
    Abstract: A semiconductor substrate includes a base portion, an auxiliary layer and a surface layer. The auxiliary layer is formed on the base portion. The surface layer is formed on the auxiliary layer. The surface layer is in contact with a first main surface of the semiconductor substrate. The auxiliary layer has a different electrochemical dissolution efficiency than the base portion and the surface layer. At least a portion of the auxiliary layer and at least a portion of the surface layer are converted into a porous structure. Subsequently, an epitaxial layer is formed on the first main surface.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 9, 2024
    Inventors: Iris MODER, Bernhard GOLLER, Tobias Franz Wolfgang HOECHBAUER, Roland RUPP, Francisco Javier SANTOS RODRIGUEZ, Hans-Joachim SCHULZE
  • Publication number: 20240047457
    Abstract: A power semiconductor device includes at a first side and electrically isolated from first and second load terminals, first control electrodes for controlling a load current in first semiconductor channel structures formed in an active region at the first side, and at a second side and electrically isolated from the first and second load terminals, second control electrodes for controlling the load current in second semiconductor channel structures formed in the active region at the second side. At the second side and in a contiguous area of modified control (AMC) belonging to the active region and having a lateral extension of at least 30% of a thickness of a semiconductor body of the device, either no second control electrodes are provided or the second control electrodes are less effective in removing free charge carriers out of the power semiconductor device than the second control electrodes outside the AMC.
    Type: Application
    Filed: July 28, 2023
    Publication date: February 8, 2024
    Inventors: Francisco Javier Santos Rodriguez, Roman Baburske, Hans-Joachim Schulze, Daniel Schlögl
  • Patent number: 11887894
    Abstract: A method for processing a wide band gap semiconductor wafer includes: depositing a support layer including semiconductor material at a back side of a wide band gap semiconductor wafer, the wide band gap semiconductor wafer having a band gap larger than the band gap of silicon; depositing an epitaxial layer at a front side of the wide band gap semiconductor wafer; and splitting the wide band gap semiconductor wafer along a splitting region to obtain a device wafer comprising at least a part of the epitaxial layer, and a remaining wafer comprising the support layer.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: January 30, 2024
    Assignee: Infineon Technologies AG
    Inventors: Francisco Javier Santos Rodriguez, Günter Denifl, Tobias Hoechbauer, Martin Huber, Wolfgang Lehnert, Roland Rupp, Hans-Joachim Schulze
  • Patent number: 11881406
    Abstract: A method of manufacturing a semiconductor device is provided. The method includes forming a carbon structure on a handle substrate at a first surface of the handle substrate. The method further includes attaching a first surface of a semiconductor substrate to the first surface of the handle substrate. The method further includes processing the semiconductor substrate and performing a separation process to separate the handle substrate from the semiconductor substrate. The separation process comprises modifying the carbon structure.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: January 23, 2024
    Assignee: Infineon Technologies AG
    Inventors: Francisco Javier Santos Rodriguez, Roland Rupp, Hans-Joachim Schulze
  • Patent number: 11881397
    Abstract: A semiconductor substrate includes a base portion, an auxiliary layer and a surface layer. The auxiliary layer is formed on the base portion. The surface layer is formed on the auxiliary layer. The surface layer is in contact with a first main surface of the semiconductor substrate. The auxiliary layer has a different electrochemical dissolution efficiency than the base portion and the surface layer. At least a portion of the auxiliary layer and at least a portion of the surface layer are converted into a porous structure. Subsequently, an epitaxial layer is formed on the first main surface.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: January 23, 2024
    Assignee: Infineon Technologies AG
    Inventors: Iris Moder, Bernhard Goller, Tobias Franz Wolfgang Hoechbauer, Roland Rupp, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze
  • Patent number: 11856711
    Abstract: A method of forming a current measurement device includes providing a glass substrate having first and second substantially planar surfaces that are opposite one another, forming a plurality of through-vias in the glass substrate that each extend between the first and second substantially planar surfaces, and forming conductive tracks on the glass substrate that connect adjacent ones of the through-vias together. Forming the plurality of through-vias includes applying radiation to the glass substrate, and the conductive tracks and the through-vias collectively form a coil structure in the glass substrate.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: December 26, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Alexander Breymesser, Francisco Javier Santos Rodriguez, Klaus Sobe
  • Publication number: 20230395394
    Abstract: A method of forming a semiconductor device includes: forming a first semiconductor layer on a semiconductor substrate, the first semiconductor layer being of the same dopant type as the semiconductor substrate, the first semiconductor layer having a higher dopant concentration than the semiconductor substrate; increasing the porosity of the first semiconductor layer; first annealing the first semiconductor layer in an atmosphere including an inert gas; forming a second semiconductor layer on the first semiconductor layer; and separating the second semiconductor layer from the semiconductor substrate by splitting within the first semiconductor layer. Additional methods of forming a semiconductor device are described.
    Type: Application
    Filed: August 22, 2023
    Publication date: December 7, 2023
    Inventors: Hans-Joachim Schulze, Alexander Breymesser, Bernhard Goller, Matthias Kuenle, Helmut Oefner, Francisco Javier Santos Rodriguez, Stephan Voss
  • Publication number: 20230361196
    Abstract: A method includes: providing a layer of porous silicon carbide supported by a silicon carbide substrate; providing a layer of epitaxial silicon carbide on the layer of porous silicon carbide; forming semiconductor devices in the layer of epitaxial silicon carbide; and separating the silicon carbide substrate from the layer of epitaxial silicon carbide at the layer of porous silicon carbide. The layer of porous silicon carbide includes dopants defining a resistivity of the layer of porous silicon carbide. The resistivity of the layer of porous silicon carbide is different from a resistivity of the silicon carbide substrate. Additional methods are described.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 9, 2023
    Inventors: Hans-Joachim Schulze, Roland Rupp, Francisco Javier Santos Rodriguez
  • Publication number: 20230317456
    Abstract: A method of manufacturing a semiconductor device in a semiconductor body having a first surface and a second surface is proposed. Semiconductor device elements are formed in the semiconductor body by processing the semiconductor body at the first surface. A wiring area is formed over the first surface of the semiconductor body. The semiconductor body is attached to a carrier via the wiring area. Thereafter, ions are implanted through the second surface into the semiconductor body. The ions are ions of a doping element, or ions, which induce doping by complex formation, or ions of a heavy metal. A surface region of the semiconductor body at the second surface is irradiated with a plurality of laser pulses. Thereafter, the carrier is removed from the semiconductor body.
    Type: Application
    Filed: March 29, 2023
    Publication date: October 5, 2023
    Inventors: Moriz Jelinek, Hans-Joachim Schulze, Werner Schustereder, Daniel Schlögl, Francisco Javier Santos Rodriguez
  • Publication number: 20230290828
    Abstract: An insulated gate bipolar transistor (IGBT) is proposed. The IGBT includes a semiconductor body having a first surface and a second surface. The IGBT further includes an active area and an edge termination area that at least partly surrounds the active area. The active area includes a first part of an active IGBT area and a second part of the active IGBT area. The IGBT further includes a contact on the second surface of the semiconductor body. A minimum vertical distance between the contact in the first part of the active IGBT area and a reference level at the first surface is larger than a minimum vertical distance between the contact in the second part of the active IGBT area and the reference level at the first surface.
    Type: Application
    Filed: March 2, 2023
    Publication date: September 14, 2023
    Inventors: Matteo Dainese, Alim Karmous, Christian Philipp Sandow, Francisco Javier Santos Rodriguez, Daniel Schlögl, Hans-Joachim Schulze
  • Patent number: 11742215
    Abstract: A method of forming a semiconductor device, including forming a first semiconductor layer on a semiconductor substrate, the first semiconductor layer being of the same dopant type as the semiconductor substrate, the first semiconductor layer having a higher dopant concentration than the semiconductor substrate, increasing the porosity of the first semiconductor layer, first annealing the first semiconductor layer at a temperature of at least 1050° C., forming a second semiconductor layer on the first semiconductor layer and separating the second semiconductor layer from the semiconductor substrate by splitting within the first semiconductor layer.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: August 29, 2023
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Alexander Breymesser, Bernhard Goller, Matthias Kuenle, Helmut Oefner, Francisco Javier Santos Rodriguez, Stephan Voss