Patents by Inventor Franciscus Petrus Widdershoven

Franciscus Petrus Widdershoven has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230075609
    Abstract: Various embodiments relate to a method for producing a plurality of weights for a neural network, wherein the neural network includes a plurality of layers, including: receiving a definition of the neural network including the number of layers and the size of the layers; and training the neural network using a training data set including: segmenting N weights of the plurality of weights into I weight sub-vectors {right arrow over (w)}(i) of dimension K=N/I; applying constraints that force sub-vectors {right arrow over (w)}(i) to concentrate near a (K?1)-dimensional single-valued hypersurface surrounding the origin; and quantizing sub-vectors {right arrow over (w)}(i) to a set of discrete K-dimensional quantization vectors {right arrow over (q)}(i) distributed in a regular pattern near the hypersurface, wherein each sub-vector {right arrow over (w)}(i) is mapped to its nearest quantization vector {right arrow over (q)}(i).
    Type: Application
    Filed: September 2, 2021
    Publication date: March 9, 2023
    Inventors: Franciscus Petrus WIDDERSHOVEN, Adam Fuks
  • Publication number: 20220207332
    Abstract: A scalable neural network accelerator may include a first circuit for selecting a sub array of an array of registers, wherein the sub array comprises LH rows of registers and LW columns of registers, and wherein LH and RH are integers. The accelerator may also include a register for storing a value that determines LH. In addition, the accelerator may include a first load circuit for loading data received from the memory bus into registers of the sub array.
    Type: Application
    Filed: December 31, 2020
    Publication date: June 30, 2022
    Inventors: Adam Fuks, Paul Kimelman, Franciscus Petrus Widdershoven, Brian Christopher Kahne, Xiaomin Lu
  • Patent number: 10998489
    Abstract: Embodiments are provided for a packaged semiconductor device including: a semiconductor die having an active side and an opposite back side, the semiconductor die including a magnetoresistive random access memory (MRAM) cell array formed within an MRAM area on the active side of the semiconductor die; and a top cover including a soft-magnetic material positioned on the back side of the semiconductor die, wherein the top cover includes a recess formed in a first major surface of the top cover, the first major surface faces the back side of the semiconductor die, and the recess is positioned over the MRAM cell array.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: May 4, 2021
    Assignee: NXP B.V.
    Inventors: Franciscus Petrus Widdershoven, Antonius Hendrikus Jozef Kamphuis
  • Publication number: 20200227624
    Abstract: Embodiments are provided for a packaged semiconductor device including: a semiconductor die having an active side and an opposite back side, the semiconductor die including a magnetoresistive random access memory (MRAM) cell array formed within an MRAM area on the active side of the semiconductor die; and a top cover including a soft- magnetic material positioned on the back side of the semiconductor die, wherein the top cover includes a recess formed in a first major surface of the top cover, the first major surface faces the back side of the semiconductor die, and the recess is positioned over the MRAM cell array.
    Type: Application
    Filed: January 14, 2019
    Publication date: July 16, 2020
    Inventors: Franciscus Petrus WIDDERSHOVEN, Antonius Hendrikus Jozef Kamphuis
  • Patent number: 10416034
    Abstract: In an embodiment, a method for analyzing signals from a pixelated capacitive sensor is disclosed. The method involves classifying capacitance signals from sensor cells of a pixelated capacitive sensor into at least one class based on capacitance values for sensor cells indicated by corresponding capacitance signals and assigning an attribute to sensor cells based on the classification of the corresponding capacitance signals.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: September 17, 2019
    Assignee: NXP B.V.
    Inventor: Franciscus Petrus Widdershoven
  • Patent number: 10274450
    Abstract: A capacitive environmental sensor and a method for determining the presence of a target substance (e.g. water) using differential capacitive measurements. The sensor includes a semiconductor substrate having a surface. The sensor also includes a plurality of sensor electrodes located on the surface. The electrodes are laterally separated on the surface by intervening spaces. The sensor further includes a sensor layer covering the electrodes. The sensor layer has a permittivity that is sensitive to the presence of the target substance. The surface of the substrate, in a space separating at least one pair of electrodes, includes a recess. The surface of the substrate, in a space separating at least one pair of electrodes, does not include a recess. The sensor may be provided in a Radio Frequency Identification (RFID) tag. The sensor may be provided in a smart building.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: April 30, 2019
    Assignee: ams International AG
    Inventors: Hilco Suy, Zoran Zivkovic, Franciscus Petrus Widdershoven, Nebojsa Nenadovic
  • Patent number: 10250258
    Abstract: Embodiments of devices and method for detecting semiconductor substrate thickness are disclosed. In an embodiment, an IC device includes a semiconductor substrate, a charge emitter embedded in the semiconductor substrate and configured to produce an electrical charge in the semiconductor substrate and a charge sensor embedded in the semiconductor substrate and configured to generate a response signal in response to the electrical charge produced in the semiconductor substrate. The magnitude of the response signal depends on the thickness of the semiconductor substrate.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: April 2, 2019
    Assignee: NXP B.V.
    Inventors: Andreas Bernardus Maria Jansman, Franciscus Petrus Widdershoven, Viet Thanh Dinh
  • Publication number: 20180180653
    Abstract: In an embodiment, a method for analyzing signals from a pixelated capacitive sensor is disclosed. The method involves classifying capacitance signals from sensor cells of a pixelated capacitive sensor into at least one class based on capacitance values for sensor cells indicated by corresponding capacitance signals and assigning an attribute to sensor cells based on the classification of the corresponding capacitance signals.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 28, 2018
    Applicant: NXP B.V.
    Inventor: Franciscus Petrus Widdershoven
  • Publication number: 20180091147
    Abstract: Embodiments of devices and method for detecting semiconductor substrate thickness are disclosed. In an embodiment, an IC device includes a semiconductor substrate, a charge emitter embedded in the semiconductor substrate and configured to produce an electrical charge in the semiconductor substrate and a charge sensor embedded in the semiconductor substrate and configured to generate a response signal in response to the electrical charge produced in the semiconductor substrate. The magnitude of the response signal depends on the thickness of the semiconductor substrate.
    Type: Application
    Filed: September 28, 2016
    Publication date: March 29, 2018
    Applicant: NXP B.V.
    Inventors: Andreas Bernardus Maria Jansman, Franciscus Petrus Widdershoven, Viet Thanh Dinh
  • Patent number: 9921228
    Abstract: A lateral test flow arrangement for a test molecule is disclosed, comprising: a test strip for transporting an analyte away from a sampling region and towards an absorbing region, the test strip having therein and remote from the sampling region, a test region for functionalization with a molecule which binds to the test molecule or to a conjugate of the test molecule; a sensing test capacitor having electrodes extending across the test strip at least partially aligned with the test region and being physically isolated therefrom; a reference test capacitor having electrodes extending across the test strip and being physically isolated therefrom; and an electronic circuit configured to measure a time-dependant capacitance difference between the sensing test capacitor and the reference test capacitor. A method for carrying out that lateral flow tests is also disclosed, as are test systems and in particular pregnancy test systems.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: March 20, 2018
    Assignee: NXP B.V.
    Inventors: Viet Nguyen, Franciscus Petrus Widdershoven, Roel Daamen
  • Publication number: 20170261457
    Abstract: A capacitive environmental sensor and a method for determining the presence of a target substance (e.g. water) using differential capacitive measurements. The sensor includes a semiconductor substrate having a surface. The sensor also includes a plurality of sensor electrodes located on the surface. The electrodes are laterally separated on the surface by intervening spaces. The sensor further includes a sensor layer covering the electrodes. The sensor layer has a permittivity that is sensitive to the presence of the target substance. The surface of the substrate, in a space separating at least one pair of electrodes, includes a recess. The surface of the substrate, in a space separating at least one pair of electrodes, does not include a recess. The sensor may be provided in a Radio Frequency Identification (RFID) tag. The sensor may be provided in a smart building.
    Type: Application
    Filed: August 13, 2015
    Publication date: September 14, 2017
    Applicant: ams International AG
    Inventors: Hilco SUY, Zoran ZIVKOVIC, Franciscus Petrus WIDDERSHOVEN, Nebojsa NENADOVIC
  • Patent number: 9435802
    Abstract: A sensor device has an arrangement of plural sensors for sensing an analyte which is in at least one of liquid phase or a suspension or a gel. Each sensor includes a nano-electrode and is configured to sense the presence of a particle localized to or bound to the nano-electrode. The sensor is configured to discriminate in real-time the binding of particles to respective nano-electrodes.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: September 6, 2016
    Assignee: NXP B.V.
    Inventor: Franciscus Petrus Widdershoven
  • Patent number: 9375711
    Abstract: “Click-assembly” methods of assembling a sensor for sensing biologically-active molecules by measuring impedance changes, are disclosed, comprising supporting a bio-sensor on a carrier, the bio-sensor comprising an electronic component having at least one micro-electrode and at least one electrical contact, functionalizing the bio-sensor by physically or chemically coupling a bio-receptor molecule to each of the at least one micro-electrode, and subsequently assembling the bio-sensor with a micro-fluidic unit by means of a clamp which clamps the bio-sensor with the micro-fluidic unit, such that in use a fluid introduced into the micro-fluidic unit is able to contact the bio-receptor and is isolated from the electrical contact. The clamp may be a spring, and the method may avoid a requirement for sealing by chemical or thermal means and thereby avoid damaging the bio-receptor. Sensors which can be assembled according to such methods are also disclosed.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: June 28, 2016
    Assignee: NXP B.V.
    Inventors: Romano Hoofman, Gerard Reuvers, Franciscus Petrus Widdershoven, Evelyne Gridelet, Marcus Henricus van Kleef
  • Patent number: 8994194
    Abstract: A method of manufacturing a biosensor semiconductor device in which copper electrodes at a major surface of the device are modified to form Au—Cu alloy electrodes. Such modification is effected by depositing a gold layer over the device, and then thermally treating the device to promote interdiffusion between the gold and the electrode copper. Alloyed gold-copper is removed from the surface of the device, leaving the exposed electrodes. The electrodes are better compatible with further processing into a biosensor device than is the case with conventional copper electrodes, and the process windows are wider than for gold capped copper electrodes. A biosensor semiconductor device having Au—Cu alloy electrodes is also disclosed.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: March 31, 2015
    Assignee: NXP, B.V.
    Inventors: David van Steenwinckel, Thomas Merelle, Franciscus Petrus Widdershoven, Viet Hoang Nguyen, Dimitri Soccol, Jan Leo Dominique Fransaer
  • Publication number: 20140323350
    Abstract: A lateral test flow arrangement for a test molecule is disclosed, comprising: a test strip for transporting an analyte away from a sampling region and towards an absorbing region, the test strip having therein and remote from the sampling region, a test region for functionalization with a molecule which binds to the test molecule or to a conjugate of the test molecule; a sensing test capacitor having electrodes extending across the test strip at least partially aligned with the test region and being physically isolated therefrom; a reference test capacitor having electrodes extending across the test strip and being physically isolated therefrom; and an electronic circuit configured to measure a time-dependant capacitance difference between the sensing test capacitor and the reference test capacitor.
    Type: Application
    Filed: December 6, 2012
    Publication date: October 30, 2014
    Applicant: NXP B.V.
    Inventors: Viet Nguyen, Franciscus Petrus Widdershoven, Roel Daamen
  • Publication number: 20140159173
    Abstract: A method of manufacturing a biosensor semiconductor device in which copper electrodes at a major surface of the device are modified to form Au—Cu alloy electrodes. Such modification is effected by depositing a gold layer over the device, and then thermally treating the device to promote interdiffusion between the gold and the electrode copper. Alloyed gold-copper is removed from the surface of the device, leaving the exposed electrodes. The electrodes are better compatible with further processing into a biosensor device than is the case with conventional copper electrodes, and the process windows are wider than for gold capped copper electrodes. A biosensor semiconductor device having Au—Cu alloy electrodes is also disclosed.
    Type: Application
    Filed: February 4, 2014
    Publication date: June 12, 2014
    Applicant: NXP B.V.
    Inventors: David van Steenwinckel, Thomas Merelle, Franciscus Petrus Widdershoven, Viet Hoang Nguyen, Dimitri Soccoi, Jan Leo Dominique Fransaer
  • Publication number: 20140128288
    Abstract: A sensor device has an arrangement of plural sensors for sensing an analyte which is in at least one of liquid phase or a suspension or a gel. Each sensor includes a nano-electrode and is configured to sense the presence of a particle localized to or bound to the nano-electrode. The sensor is configured to discriminate in real-time the binding of particles to respective nano-electrodes.
    Type: Application
    Filed: April 10, 2013
    Publication date: May 8, 2014
    Applicant: NXP B.V.
    Inventor: Franciscus Petrus WIDDERSHOVEN
  • Patent number: 8679966
    Abstract: A method of manufacturing a biosensor semiconductor device in which copper electrodes at a major surface of the device are modified to form Au—Cu alloy electrodes. Such modification is effected by depositing a gold layer over the device, and then thermally treating the device to promote interdiffusion between the gold and the electrode copper. Alloyed gold-copper is removed from the surface of the device, leaving the exposed electrodes. The electrodes are better compatible with further processing into a biosensor device than is the case with conventional copper electrodes, and the process windows are wider than for gold capped copper electrodes. A biosensor semiconductor device having Au—Cu alloy electrodes is also disclosed.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: March 25, 2014
    Assignee: NXP, B.V.
    Inventors: David Van Steenwinckel, Thomas Merelle, Franciscus Petrus Widdershoven, Viet Hoang Nguyen, Dimitri Soccoi, Jan Leo Dominique Fransaer
  • Publication number: 20130207206
    Abstract: A method of manufacturing a biosensor semiconductor device in which copper electrodes at a major surface of the device are modified to form Au—Cu alloy electrodes. Such modification is effected by depositing a gold layer over the device, and then thermally treating the device to promote interdiffusion between the gold and the electrode copper. Alloyed gold-copper is removed from the surface of the device, leaving the exposed electrodes. The electrodes are better compatible with further processing into a biosensor device than is the case with conventional copper electrodes, and the process windows are wider than for gold capped copper electrodes. A biosensor semiconductor device having Au—Cu alloy electrodes is also disclosed.
    Type: Application
    Filed: August 7, 2012
    Publication date: August 15, 2013
    Applicant: NXP B.V.
    Inventors: David VAN STEENWINCKEL, Thomas MERELLE, Franciscus Petrus WIDDERSHOVEN, Viet Hoang NGUYEN, Dimitri SOCCOl, Jan Leo Dominique FRANSAER
  • Patent number: 8115239
    Abstract: The electric device according to the invention has a resistor comprising a layer of a phase change material which is changeable between a first phase with a first electrical resistivity and a second phase with a second electrical resistivity different from the first electrical resistivity. The phase change material is a fast growth material. The electric device further comprises a switching signal generator for switching the resistor between at least three different electrical resistance values by changing a corresponding portion of the layer of the phase change material from the first phase to the second phase.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: February 14, 2012
    Assignee: NXP B.V.
    Inventors: Martijn Henri Richard Lankhorst, Erwin Rinaldo Meinders, Robertus Adrianus Maria Wolters, Franciscus Petrus Widdershoven