Patents by Inventor Francois Guy Gerard Marie Vignon

Francois Guy Gerard Marie Vignon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220192640
    Abstract: Systems and methods for triggering the acquisition of elastography measurements based on motion data are disclosed. Motion data may be acquired by Doppler mode imaging in some embodiments. The motion data may be used to generate a trigger signal. The trigger signal may be provided to a transmit controller. The transmit controller may cause an ultrasound transducer to acquire elastography measurements responsive to the trigger signal.
    Type: Application
    Filed: April 17, 2020
    Publication date: June 23, 2022
    Inventors: FRANCOIS GUY GERARD MARIE VIGNON, CAROLINA AMADOR CARRASCAL, SEUNGSOO KIM
  • Patent number: 11346929
    Abstract: A method in accordance with the present disclosure may include transmitting a plurality of ultrasound pulses toward a medium from a transducer array, wherein the plurality of ultrasound pulses includes a sequence of a Doppler burst (10-1, 10-2) comprising a plurality of unfocused first pulses (12) and a B-mode burst comprising one or more second pulses (13). The method may further include detecting echoes responsive to the transmitted sequence, wherein the detecting includes simultaneously detecting, within a field of view, FOV, of the array, a set (14-1, 14-2) of first echoes responsive to the plurality of unfocused first pulses (12), generating Doppler data from signals representative of the set (14-1, 14-2) of first echoes, generating B-mode image data from signals representative of echoes responsive to the one or more second pulses (13), and simultaneously displaying the Doppler data and B-mode image data.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: May 31, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Francois Guy Gerard Marie Vignon, Bo Zhang, Jean-Luc Francois-Marie Robert
  • Patent number: 11331079
    Abstract: The invention provides an ultrasound data processing method for pre-processing signal data in advance of generating ultrasound images. The method seeks to reduce noise through application of coherent persistence to a series of raw ultrasound signal representations representative of the same path or section through a body but at different successive times. A motion compensation procedure including amplitude peak registration and phase alignment is applied to raw echo signal data in advance of application of persistence in order to cohere the signals and thereby limit the introduction of motion induced artifacts.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: May 17, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Tong Nicolas Yu, Sheng-Wen Huang, Francois Guy Gerard Marie Vignon, Oudom Somphone, Shiying Wang
  • Patent number: 11298028
    Abstract: The invention relates to a temperature distribution determination apparatus for determining a temperature distribution within an object (20), while an energy application element (2) applies energy to the object, especially while an ablation procedure for ablating a tumor within an organ is performed. A time-dependent first ultrasound signal is generated for an ultrasound measurement region within the object and a temperature distribution within the object is determined based on the generated time-dependent first ultrasound signal and based on a position of the energy application element (2) relative to the ultrasound measurement region tracked over time. This can ensure that always the correct position of the energy application element, which may be regarded as being a heat source, is considered, even if the energy application element moves, for instance, due to a movement of the object. This can lead to a more accurate determination of the temperature distribution.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: April 12, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shriram Sethuraman, Ajay Anand, Sheng-Wen Huang, Francois Guy Gerard Marie Vignon, Ameet Kumar Jain
  • Publication number: 20220096171
    Abstract: A system for tracking a medical device includes an introducer (20). Two or more sensors (22) are disposed along a length of the introducer and are spaced apart along the length. An interface (32) is configured to connect to the introducer such that the introducer and the interface operatively couple to and support the medical device wherein the two or more sensors are configured to provide feedback for positioning and orienting the medical device using medical imaging.
    Type: Application
    Filed: December 9, 2021
    Publication date: March 31, 2022
    Inventors: Shyam BHARAT, Ramon Quido ERKAMP, Ameet Kumar JAIN, Francois Guy Gerard Marie VIGNON
  • Publication number: 20220096054
    Abstract: Ultrasound image devices, systems, and methods are provided. An ultrasound imaging system, comprising an array of acoustic elements configured to transmit ultrasound energy into an anatomy and to receive ultrasound echoes associated with the anatomy; and a processor circuit in communication with the array of acoustic elements and configured to receive, from the array, ultrasound channel data corresponding to the received ultrasound echoes; normalize the ultrasound channel data by applying a first scaling function to the ultrasound channel data; generate beamformed data by applying a predictive network to the normalized ultrasound channel data; de-normalize the beamformed data by applying a second scaling function to the beamformed data; generate an image of the anatomy from the beamformed data; and output, to a display in communication with the processor circuit, the image of the anatomy.
    Type: Application
    Filed: February 10, 2020
    Publication date: March 31, 2022
    Inventors: Francois Guy Gerard Marie VIGNON, Muhammad Usman GHANI, Jun Seob SHIN, Faik Can MERAL, Sheng-wen HUANG, Jean-Luc Francois-Marie ROBERT
  • Patent number: 11266312
    Abstract: An instrument for internal mapping includes a flexible elongated portion (702) and an expandable portion (710) coupled distally to the elongated portion, the expandable portion having one or more expandable loops. An array of sensors (706) and electrodes (708) is distributed on the expandable portion and is configured to concurrently register the instrument to real-time images of an anatomy using the sensors and measure electrical characteristics of the anatomy with the electrodes to generate an electro-physiology (EP) map having the anatomy and intensities of the electrical characteristics mapped together in the real-time images.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: March 8, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Francois Guy Gerard Marie Vignon, Ameet Kumar Jain
  • Publication number: 20220015741
    Abstract: Ultrasound systems and methods for shear wave elastography (SWE) imaging are described which may improve the scan protocol for SWE imaging of anisotropic tissue. One or more initial measurements may be acquired to determine the orientation of the anisotropic tissue. The system acquires shear wave speed and/or stiffness measurements from at least two perpendicular intersecting planes through the anisotropic tissue and reports, a shear wave speed and/or stiffness measurement along the perpendicular intersecting planes and/or a composite measurement based upon the plurality of individual shear wave speed and/or stiffness measurement obtained at the different image planes. Improvements to the SWE imaging protocol may be achieved by providing guidance by way of an improved graphical user interface, to assist the sonographer in acquiring measurements at suitable imaging planes for more accurately characterizing the anisotropic tissue. The SWE imaging protocol may be an automatic or semi-automatic protocol.
    Type: Application
    Filed: December 30, 2019
    Publication date: January 20, 2022
    Inventors: CAROLINA AMADOR CARRASCAL, FRANCOIS GUY GERARD MARIE VIGNON, SEUNGSOO KIM, HUA XIE
  • Patent number: 11224410
    Abstract: The invention provides a method for generating an ultrasound image. The method includes obtaining ultrasound data from an ultrasonic transducer array, the ultrasonic transducer array having M transducer elements. The method further includes generating N sets of image data from the ultrasound data using N random apodization functions. A minimizing function is then applied to a collection of image data, wherein the collection of image data comprises the N sets of image data. An ultrasound image is then generated based on the minimized image data.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: January 18, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jun Seob Shin, Seungsoo Kim, Francois Guy Gerard Marie Vignon, Sheng-Wen Huang, Jean-Luc Francois-Marie Robert
  • Publication number: 20210389438
    Abstract: An ultrasound imaging system according to the present disclosure may include an ultrasound probe, a display unit, and a processor configured to receive source image data having a first dynamic range, wherein the source image data comprises log compressed echo intensity values based on the ultrasound echoes detected by the ultrasound probe, generate a histogram of at least a portion of source image data, generate a cumulative density function for the histogram, receive an indication of at least two points on the cumulative density function (CDF), and cause the display unit to display an ultrasound image representative of the source image data displayed in accordance with the second dynamic range.
    Type: Application
    Filed: August 27, 2021
    Publication date: December 16, 2021
    Inventors: David Wesley Clark, Francois Guy Gerard Marie Vignon, Darwin Philip Adams, Roy Allan Sivley, Kirthi Radhakrishnan
  • Patent number: 11197721
    Abstract: A system for tracking a medical device includes an introducer. Two or more sensors are disposed along a length of the introducer and are spaced apart along the length. An interface is configured to connect to the introducer such that the introducer and the interface operatively couple to and support the medical device wherein the two or more sensors are configured to provide feedback for positioning and orienting the medical device using medical imaging.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: December 14, 2021
    Assignee: KONINKLIKE PHILIPS N.V.
    Inventors: Shyam Bharat, Ramon Quido Erkamp, Ameet Kumar Jain, Francois Guy Gerard Marie Vignon
  • Publication number: 20210361359
    Abstract: A controller for determining orientation of an interventional medical device includes a memory that stores instructions, and a processor that executes the instructions. When executed by the processor, the instructions cause the controller to execute a process that includes controlling emission, by an ultrasound probe, of multiple beams each at a different combination of time of emission and angle of emission relative to the ultrasound probe. The process also includes determining, based on receipt of a response to a subset of the multiple beams at a sensor at a location on the interventional medical device, the combination of time of emission and angle of emission relative to the ultrasound probe of one of the subset of the multiple beams. The process also includes determining orientation of the interventional medical device based on the time of emission and angle of emission relative to the ultrasound probe of the one the subset of the multiple beams.
    Type: Application
    Filed: June 11, 2019
    Publication date: November 25, 2021
    Inventors: RAMON QUIDO ERKAMP, HENDRIK ROELOF STAPERT, GUNTHER LAMPARTER, AMEET KUMAR JAIN, ALVIN CHEN, SHYAM BHARAT, KUNAL VAIDYA, FRANCOIS GUY GERARD MARIE VIGNON
  • Publication number: 20210353250
    Abstract: A tool navigation system employing an ultrasound probe (20), an ultrasound scanner (60), an interventional tool (30) (e.g., a needle or a catheter), a plurality of ultrasound transducers (21, 31), a tool tracker (70) and an image navigator. In operation, the ultrasound probe (20) generates an acoustic image plane for scanning an anatomical region, and the ultrasound scanner (60) generates an ultrasound image of the anatomical region from a scan of the anatomical region. During the scan, the interventional tool (30) is navigated within the anatomical region relative to the acoustic image plane, and the ultrasound transducers (21, 31) facilitate a tracks by the tool tracker (70) of a position of the interventional tool (30) relative to the acoustic image plane.
    Type: Application
    Filed: July 27, 2021
    Publication date: November 18, 2021
    Inventors: Francois Guy Gerard Marie VIGNON, Ameet Kumar JAIN
  • Publication number: 20210338209
    Abstract: An ultrasound system produces high quality images at a high framerate of display. A plane or volume to be imaged is scanned by different diverging transmit beams to acquire a series of different sub-frames, the number of sub-frame acquisitions comprising a total number of transmit beams which would produce a high quality image. The echoes received in response to the transmit beams of a sub-frame are coherently combined with the echoes received in other sub-frames. Each time the echoes of a new sub-frame have been coherently combined with the echoes of all other different sub-frames, a full image is produced. After a complete series of sub-frames has been received and the echoes combined, another series of sub-frame acquisition is commenced and a new series of sub-frames acquired. As each new sub-frame is acquired, it is coherently combined with all the other different and most recently acquired sub-frames.
    Type: Application
    Filed: September 5, 2019
    Publication date: November 4, 2021
    Inventors: Jean-Luc Francois-Marie ROBERT, Francois Guy Gerard Marie VIGNON, Shiying WANG, Jun Seob SHIN, Man NGUYEN, Faik Can MERAL
  • Publication number: 20210321977
    Abstract: System (10) for determining a position of an interventional device (11) respective an image plane (12) defined by an ultrasound imaging probe (13). The position is determined based on ultrasound signals transmitted between the ultrasound imaging probe (13) and an ultrasound transducer (15) attached to the interventional device (11). An image reconstruction unit (IRU) provides a reconstructed ultrasound image (RUI). A position determination unit (PDU) computes a position (LAPTOFSmax, ?IPA) of the ultrasound transducer (15) respective the image plane (12). The position determination unit (PDU) indicates the computed position (LAPTOFSmax, ?IPA) in the reconstructed ultrasound image (RUI). The position determination unit (PDU) suppresses the indication of the computed position (LAPTOFSmax, ?IPA) under specified conditions relating to the computed position (LAPTOFSmax, ?IPA) and the ultrasound signals.
    Type: Application
    Filed: August 7, 2019
    Publication date: October 21, 2021
    Inventors: Mischa MEGENS, Hendrik Roelof STAPERT, Mustafa Hakan GOKGURLER, Stefan VAN DE PAS, Jeroen KORTSMIT, Franciscus Hendrikus VAN HEESCH, Harm Jan Willem BELT, Ameet Kumar JAIN, Kunal VAIDYA, Francois Guy Gerard Marie VIGNON
  • Patent number: 11147532
    Abstract: An imaging system and method include a medical device (102) having a tracking element (106) mounted thereon. An array (109) of transducers is spaced apart from one another for exchanging energy in a subject between tracking element and the array of transducers. A trilateration module (104) is configured to interpret signals sensed between tracking element and the array of transducers to compute times of flight of signals associated with the transducers in the array such that a position of tracking element is determined in at least two dimensions to locate a position of the medical device in a visual image.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: October 19, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ameet Kumar Jain, Francois Guy Gerard Marie Vignon
  • Publication number: 20210298716
    Abstract: A controller (310) for identifying positioning of an intravascular ultrasound probe (952) includes a memory (362) that stores instructions (884) and a processor (361) that executes the instructions (884). When executed by the processor (361), the instructions (884) cause the controller (310) to execute a process that includes receiving first signals from at least one element of the intravascular ultrasound probe (952). The process also includes receiving second signals from an external ultrasound probe. Based on the first signals and the second signals, the controller (310) determines a position of the intravascular ultrasound probe (952) in a tracking space that includes the intravascular ultrasound probe (952) and the external ultrasound probe.
    Type: Application
    Filed: June 17, 2019
    Publication date: September 30, 2021
    Inventors: Ramon Quido ERKAMP, Francois Guy Gerard Marie VIGNON, Shyam BHARAT, Kunal VAIDYA, Ameet Kumar JAIN
  • Patent number: 11105907
    Abstract: An ultrasound imaging system according to the present disclosure may include an ultrasound probe, a display unit, and a processor configured to receive source image data having a first dynamic range, wherein the source image data comprises log compressed echo intensity values based on the ultrasound echoes detected by the ultrasound probe, generate a histogram of at least a portion of source image data, generate a cumulative density function for the histogram, receive an indication of at least two points on the cumulative density function (CDF), and cause the display unit to display an ultrasound image representative of the source image data displayed in accordance with the second dynamic range.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: August 31, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: David Wesley Clark, Francois Guy Gerard Marie Vignon, Darwin Philip Adams, Roy Allan Sivley, Kirthi Radhakrishnan
  • Publication number: 20210265042
    Abstract: Ultrasound imaging devices, systems, and methods are provided. In one embodiment, an ultrasound imaging system comprising a processor configured to receive ultrasound channel data representative of a subject's anatomy generated from an ultrasound transducer; apply a predictive network to the ultrasound channel data to generate an image of the subjects anatomy; and output, to a display in communication with the processor, the image of the subjects anatomy. In one embodiment, a system for generating an image, the system comprising a memory storing at least one machine learning network; and a processor in communication with the memory, the processor configured to receive raw channel data generated from an ultrasound transducer; apply the machine learning network to the raw channel data to replace one or more image processing steps, thereby generating modified data; and generate an image using the modified data.
    Type: Application
    Filed: July 19, 2019
    Publication date: August 26, 2021
    Inventors: Seungsoo Kim, Jun Seob Shin, Francois Guy Gerard Marie Vignon, Jean-Luc Francois-Marie Robert
  • Publication number: 20210259661
    Abstract: The present disclosure describes systems and methods configured to determine shear wave velocity and tissue stiffness levels of thin tissue of finite size, also referred to as bounded tissue, via shear wave elastography. Systems can include an ultrasound transducer configured to acquire echoes responsive to pulses transmitted toward a tissue. Systems can also transmit a push pulse into the tissue for generating shear waves, and tracking pulses intersecting the shear waves. The system can also apply a directional filter to received echo data and generate directionally filtered shear wave data based on a dimension and angular orientation of the bounded target relative to the ultrasound transducer. The system can estimate velocities of the shear waves at different shear wave frequencies based on the filtered shear wave data and angular orientation relative to the transducer, and determine a tissue stiffness value independent of the shape or form of the tissue.
    Type: Application
    Filed: July 17, 2019
    Publication date: August 26, 2021
    Inventors: CAROLINA AMADOR CARRASCAL, FRANCOIS GUY GERARD MARIE VIGNON, SEUNGSOO KIM