Patents by Inventor Francois J. Henley

Francois J. Henley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180259570
    Abstract: Embodiments relate to functional test methods useful for fabricating products containing Light Emitting Diode (LED) structures. In particular, LED arrays are functionally tested by injecting current via a displacement current coupling device using a field plate comprising of an electrode and insulator placed in close proximity to the LED array. A controlled voltage waveform is then applied to the field plate electrode to excite the LED devices in parallel for high-throughput. A camera records the individual light emission resulting from the electrical excitation to yield a function test of a plurality of LED devices. Changing the voltage conditions can excite the LEDs at differing current density levels to functionally measure external quantum efficiency and other important device functional parameters.
    Type: Application
    Filed: January 23, 2018
    Publication date: September 13, 2018
    Inventor: Francois J. HENLEY
  • Patent number: 10041187
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate. In particular embodiments, a bulk substrate (e.g. donor substrate) having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise Si, SiC, or other materials. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: August 7, 2018
    Assignee: QMAT, INC.
    Inventors: Francois J. Henley, Sien Kang, Albert Lamm
  • Publication number: 20180174931
    Abstract: Embodiments relate to functional test methods useful for fabricating products containing Light Emitting Diode (LED) structures. In particular, LED arrays are functionally tested by injecting current via a displacement current coupling device using a field plate comprising of an electrode and insulator placed in close proximity to the LED array. A controlled voltage waveform is then applied to the field plate electrode to excite the LED devices in parallel for high-throughput. A camera records the individual light emission resulting from the electrical excitation to yield a function test of a plurality of LED devices. Changing the voltage conditions can excite the LEDs at differing current density levels to functionally measure external quantum efficiency and other important device functional parameters.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 21, 2018
    Inventor: Francois J. HENLEY
  • Publication number: 20180138357
    Abstract: Embodiments relate to fabricating a micro-Light Emitting Diode (LED) structure utilizing layer-transferred material. In particular, high quality Gallium Nitride (GaN) is grown upon a donor substrate, utilizing techniques such as Hydride Vapor Phase Epitaxy (HVPE). Exemplary donor substrates can comprise GaN, AlN, SiC, sapphire, and/or single crystal silicon—e.g., (111). The large relative thickness (e.g., ˜10's of ?m) of GaN grown in this manner, significantly reduces (e.g., to about 2-3×106 cm?2) Threading Dislocation Densities (TDDs) present in the material. This allows the cleaved grown GaN material to be well-suited for transfer and incorporation into a micro-LED structure operating at high brightness under low current/heat generation conditions.
    Type: Application
    Filed: November 10, 2017
    Publication date: May 17, 2018
    Inventor: Francois J. HENLEY
  • Publication number: 20180040764
    Abstract: Embodiments relate to fabricating a wafer including a thin, high-quality single crystal GaN layer serving as a template for formation of additional GaN material. A bulk ingot of GaN material is subjected to implantation to form a subsurface cleave region. The implanted bulk material is bonded to a substrate having lattice and/or Coefficient of Thermal Expansion (CTE) properties compatible with GaN. Examples of such substrate materials can include but are not limited to AlN and Mullite. The GaN seed layer is transferred by a controlled cleaving process from the implanted bulk material to the substrate surface. The resulting combination of the substrate and the GaN seed layer, can form a template for subsequent growth of overlying high quality GaN. Growth of high-quality GaN can take place utilizing techniques such as Liquid Phase Epitaxy (LPE) or gas phase epitaxy, e.g., Metallo-Organic Chemical Vapor Deposition (MOCVD) or Hydride Vapor Phase Epitaxy (HVPE).
    Type: Application
    Filed: July 27, 2017
    Publication date: February 8, 2018
    Inventor: Francois J. HENLEY
  • Publication number: 20180040765
    Abstract: Embodiments transfer thin layers of material utilized in electronic devices (e.g., GaN for optoelectronic devices), from a donor to a handle substrate. Certain embodiments employ bond-and-release system(s) where release occurs along a cleave plane formed by implantation of particles into the donor. Some embodiments may rely upon release by converting components from solid to liquid under carefully controlled thermal conditions (e.g., solder-based materials and/or thermal decomposition of Indium-containing materials). Some embodiments utilize laser-induced film release processes using epitaxially grown or implanted regions as an optically absorptive region. A single bond-and-release sequence may involve processing an exposed N-face of GaN material. Multiple bond-and-release sequences (involving processing an exposed Ga-face of GaN material) may be employed in series, for example utilizing a temporary handle substrate as an intermediary.
    Type: Application
    Filed: October 13, 2017
    Publication date: February 8, 2018
    Inventors: Francois J. HENLEY, Sien KANG, Mingyu ZHONG, Minghang LI
  • Publication number: 20180033609
    Abstract: Embodiments relate to reclaiming a donor substrate that has previously supplied a thin film of material in a layer transfer process. Certain embodiments selectively perform annular grinding upon edge regions only of the donor substrate. This serves to remove residual material at the edge regions, with grind damage not impacting subsequent transfer of material from central regions of the donor substrate. Some embodiments accomplish reclamation by applying energy to the donor substrate after cleaving has occurred. The energy is calculated to interact with a cleave region (e.g., resulting from ion implantation) underlying the residual material, thereby allowing separation of that residual material at the cleave region. This reclamation approach can remove residual material in donor substrate central regions (e.g., resulting from a void), without requiring invasive grinding and post-grinding processing to remove grind damage. Embodiments may apply energy in the form of a laser beam absorbed at the cleave region.
    Type: Application
    Filed: July 6, 2017
    Publication date: February 1, 2018
    Inventor: Francois J. HENLEY
  • Publication number: 20180019169
    Abstract: A donor substrate in a layer transfer process, is stabilized by attaching a backing substrate. The backing substrate allows thermal and mechanical stabilization during high-power implant processes. Upon cleaving the donor substrate to release a thin layer of material to a target, the backing substrate prevents uncontrolled release of internal stress leading to buckling/fracture of the donor substrate. The internal stress may accumulate in the donor substrate due to processes such as cleave region formation, bonding to the target, and/or the cleaving process itself, with uncontrolled bow and warp potentially precluding reclamation/reuse of the donor substrate in subsequent layer transfer processes. In certain embodiments the backing substrate may exhibit a Coefficient of Thermal Expansion (CTE) substantially matching, or complementary to, that of the donor substrate. In some embodiments the backing structure may include a feature such as a lip.
    Type: Application
    Filed: July 6, 2017
    Publication date: January 18, 2018
    Inventor: Francois J. HENLEY
  • Patent number: 9859458
    Abstract: Embodiments transfer thin layers of material utilized in electronic devices (e.g., GaN for optoelectronic devices), from a donor to a handle substrate. Certain embodiments employ bond-and-release system(s) where release occurs along a cleave plane formed by implantation of particles into the donor. Some embodiments may rely upon release by converting components from solid to liquid under carefully controlled thermal conditions (e.g., solder-based materials and/or thermal decomposition of Indium-containing materials). Some embodiments utilize laser-induced film release processes using epitaxially grown or implanted regions as an optically absorptive region. A single bond-and-release sequence may involve processing an exposed N-face of GaN material. Multiple bond-and-release sequences (involving processing an exposed Ga-face of GaN material) may be employed in series, for example utilizing a temporary handle substrate as an intermediary.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: January 2, 2018
    Assignee: QMAT, INC.
    Inventors: Francois J. Henley, Sien Kang, Mingyu Zhong, Minghang Li
  • Publication number: 20170358704
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate are described. In particular embodiments, a bulk substrate having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise (111) single crystal silicon. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices.
    Type: Application
    Filed: June 29, 2017
    Publication date: December 14, 2017
    Inventors: Francois J. HENLEY, Sien KANG, Albert LAMM
  • Publication number: 20170084778
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate are described. In particular embodiments, a bulk substrate having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise (111) single crystal silicon. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices.
    Type: Application
    Filed: December 7, 2016
    Publication date: March 23, 2017
    Inventors: Francois J. HENLEY, Sien KANG, Albert LAMM
  • Publication number: 20170002479
    Abstract: A method for slicing a crystalline material ingot includes providing a crystalline material boule characterized by a cropped structure including a first end-face, a second end-face, and a length along an axis in a first crystallographic direction extending from the first end-face to the second end-face. The method also includes cutting the crystalline material boule substantially through a first crystallographic plane in parallel to the axis to separate the crystalline material boule into a first portion with a first surface and a second portion with a second surface. The first surface and the second surface are planar surfaces substantially along the first crystallographic plane. The method further includes exposing either the first surface of the first portion or the second surface of the second portion, and performing a layer transfer process to form a crystalline material sheet from either the first surface of the first portion or from the second surface of the second portion.
    Type: Application
    Filed: September 13, 2016
    Publication date: January 5, 2017
    Inventor: Francois J. Henley
  • Publication number: 20160372628
    Abstract: Embodiments transfer thin layers of material utilized in electronic devices (e.g., GaN for optoelectronic devices), from a donor to a handle substrate. Certain embodiments employ bond-and-release system(s) where release occurs along a cleave plane formed by implantation of particles into the donor. Some embodiments may rely upon release by converting components from solid to liquid under carefully controlled thermal conditions (e.g., solder-based materials and/or thermal decomposition of Indium-containing materials). Some embodiments utilize laser-induced film release processes using epitaxially grown or implanted regions as an optically absorptive region. A single bond-and-release sequence may involve processing an exposed N-face of GaN material. Multiple bond-and-release sequences (involving processing an exposed Ga-face of GaN material) may be employed in series, for example utilizing a temporary handle substrate as an intermediary.
    Type: Application
    Filed: June 17, 2016
    Publication date: December 22, 2016
    Inventors: Francois J. HENLEY, Sien KANG, Mingyu ZHONG, Minghang LI
  • Publication number: 20160319462
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin layers of material from a bulk substrate. In particular embodiments, a bulk substrate (e.g. donor substrate) having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise a core of crystalline sapphire (Al2O3) material. Then, a thin layer of the material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. Embodiments may find particular use as hard, scratch-resistant covers for personal electric device displays, or as optical surfaces for fingerprint, eye, or other biometric scanning.
    Type: Application
    Filed: March 29, 2016
    Publication date: November 3, 2016
    Inventor: Francois J. HENLEY
  • Patent number: 9460908
    Abstract: A method for slicing a crystalline material ingot includes providing a crystalline material boule characterized by a cropped structure including a first end-face, a second end-face, and a length along an axis in a first crystallographic direction extending from the first end-face to the second end-face. The method also includes cutting the crystalline material boule substantially through a first crystallographic plane in parallel to the axis to separate the crystalline material boule into a first portion with a first surface and a second portion with a second surface. The first surface and the second surface are planar surfaces substantially along the first crystallographic plane. The method further includes exposing either the first surface of the first portion or the second surface of the second portion, and performing a layer transfer process to form a crystalline material sheet from either the first surface of the first portion or from the second surface of the second portion.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: October 4, 2016
    Assignee: Silicon Genesis Corporation
    Inventor: Francois J. Henley
  • Publication number: 20160247958
    Abstract: A film of material may be formed by providing a semiconductor substrate having a surface region and a cleave region located at a predetermined depth beneath the surface region. During a process of cleaving the film from the substrate, shear in the cleave region is carefully controlled. According to certain embodiments, an in-plane shear component (KII) is maintained near zero, sandwiched between a tensile region and a compressive region. In one embodiment, cleaving can be accomplished using a plate positioned over the substrate surface. The plate serves to constrain movement of the film during cleaving, and together with a localized thermal treatment reduces shear developed during the cleaving process. According to other embodiments, the KIT component is purposefully maintained at a high level and serves to guide and drive fracture propagation through the cleave sequence.
    Type: Application
    Filed: May 3, 2016
    Publication date: August 25, 2016
    Inventor: Francois J. HENLEY
  • Publication number: 20160208416
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin layers of material from a bulk substrate. In particular embodiments, a bulk substrate (e.g. donor substrate) having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise a core of crystalline sapphire (Al2O3) material. Then, a thin layer of the material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. Embodiments may find particular use as hard, scratch-resistant covers for personal electric device displays, or as optical surfaces for fingerprint, eye, or other biometric scanning.
    Type: Application
    Filed: March 29, 2016
    Publication date: July 21, 2016
    Inventor: Francois J. HENLEY
  • Patent number: 9362439
    Abstract: A film of material may be formed by providing a semiconductor substrate having a surface region and a cleave region located at a predetermined depth beneath the surface region. During a process of cleaving the film from the substrate, shear in the cleave region is carefully controlled. According to certain embodiments, an in-plane shear component (KII) is maintained near zero, sandwiched between a tensile region and a compressive region. In one embodiment, cleaving can be accomplished using a plate positioned over the substrate surface. The plate serves to constrain movement of the film during cleaving, and together with a localized thermal treatment reduces shear developed during the cleaving process. According to other embodiments, the KII component is purposefully maintained at a high level and serves to guide and drive fracture propagation through the cleave sequence.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: June 7, 2016
    Assignee: SILICON GENESIS CORPORATION
    Inventor: Francois J. Henley
  • Patent number: 9336989
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin layers of material from a bulk substrate. In particular embodiments, a bulk substrate (e.g. donor substrate) having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise a core of crystalline sapphire (Al2O3) material. Then, a thin layer of the material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. Embodiments may find particular use as hard, scratch-resistant covers for personal electric device displays, or as optical surfaces for fingerprint, eye, or other biometric scanning.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: May 10, 2016
    Assignee: SILICON GENESIS CORPORATION
    Inventor: Francois J. Henley
  • Publication number: 20160111500
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate are described. In particular embodiments, a bulk substrate having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise (111) single crystal silicon. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices.
    Type: Application
    Filed: December 28, 2015
    Publication date: April 21, 2016
    Inventors: Francois J. HENLEY, Sien KANG, Albert LAMM