Patents by Inventor Francois M. Casati

Francois M. Casati has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160264716
    Abstract: Embodiments of the invention include a method of producing polymer polyol dispersions is. The method includes providing at least one reaction system, and the reaction system includes: a) at least one polyol, b) at least one seed population, c) at least one catalyst, at least one co-reactant having an equivalent weight of up to 400 and at least one active hydrogen attached to a nitrogen or oxygen atom, and e) at least one polyisocyanate. The at least one seed population includes less than about 5% by weight of the total weight of the at least one reaction system and includes seed particles having diameters of less than 5 ?m. The at least one reaction mixture reacts to form at least one of a polyurea and polyurethane-urea particle population in the at least one polyol without the addition of any catalysts comprising tin. The polymer polyol dispersion has a solids content of at least 15% of the weight of the polymer polyol dispersion.
    Type: Application
    Filed: May 23, 2016
    Publication date: September 15, 2016
    Inventors: Paul Cookson, Ricco B. Borella, Daniel Hoehener, Francois M. Casati
  • Patent number: 9441068
    Abstract: Embodiments of the invention provide for viscoelastic polyurethane foams. The foams are made from reaction system which includes (a) an isocyanate reactive component, (b) a isocyanate component, (c) one or more blowing agents, (d) a catalyst component, and (e) a silicone based surfactant. The isocyanate reactive component includes at least (i) from 25 to 80% by weight of at least one polyoxyethylene capped polyoxypropylene/polyoxyethylene polyol having a combined number average equivalent weight from 1300 to 1700, a polyoxyethylene percentage of between 75% and 95% by weight of the combined amounts of polyoxypropylene and polyoxyethylene, and a primary OH percentage of between 80 and 95% of the total number of OH groups of the polyoxyethylene capped polyoxypropylene/polyoxyethylene polyol, and (ii) from 5 to 30% by weight of the isocyanate reactive component of at least one low functionality polyol having a functionality of between 1.5 and 2.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: September 13, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Elisa Corinti, Andrea Benvenuti, Alessio Sabadini, Jean-Paul Masy, Francois M. Casati, Brian Dickie
  • Patent number: 9399696
    Abstract: Embodiments include polymer polyol dispersions which include a polyol liquid phase and solid particle phase. Embodiments include methods of making the polymer polyol dispersions. The polymer polyol dispersions are essentially free of tin, have a solid content of between about 20 and 50 wt % based on the total weight of the polymer polyol dispersion, and have a viscosity at 20 C. of less than 9000 mPas. The solid particle phase has more than 90% by weight of particles in the solid particle phase having a particle diameter of less than 5 ?m.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 26, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Ricco B. Borella, Paul Cookson, Daniel Hoehener, Francois M. Casati
  • Publication number: 20160185894
    Abstract: A polyglycerine initiated polyether polyol exhibiting a final functionality less than the nominal functionalities of the polyol initiator wherein the initiator is a polyglycerine formed by the polymerization of glycerin having an HEW less than about 35 and exhibiting a nominal functionality between 2 and 16 is provided. Also provided is a process for producing a polyfunctional polyurethane by the reaction of a mixture containing a polyol based on polyglycerine initiator wherein between 5 wt % and 100 wt % of the total initiator is polyglycerine having a nominal functionality between 2 and 16, at least one organic isocyanate, an amine and/or a metal salt catalyst, and optionally a blowing agent. Also provided is a flexible polyurethane foam comprising a reaction product of a polyglycerine or formed by the glycidol polymerization of glycerin, at least one organic isocyanate, and an amine catalyst.
    Type: Application
    Filed: March 3, 2016
    Publication date: June 30, 2016
    Inventors: Francois M. Casati, Esther E. Quintanilla, Hanno R. Van Der Wal, Timothy A. Morley, Peter Mullaert
  • Publication number: 20150344611
    Abstract: Insulating unit are disclosed which are prepared by a cavity-filling, fast-gelling rigid polyurethane foam based on a formulation comprising a polyol component which contains at least 5 weight percent of an amine-initiated polyols and 1.4 to 4 parts by weight of a catalyst package whereby the catalyst package contains at least one amine catalyst and the weight percent nitrogen present in the amine-initiated polyol to weight percent nitrogen present in the catalyst system is from 2 to 8. The formulation is injected into the cavity and the pressure in the cavity is subjected to reduced atmospheric pressure to achieve the rigid foam having a thermal conductivity of less than about 19 mW/mK at 10° C. average plate temperature.
    Type: Application
    Filed: August 10, 2015
    Publication date: December 3, 2015
    Inventors: Hans Kramer, Vanni Parenti, Francois M. Casati, Timothy A. Morley
  • Patent number: 9062143
    Abstract: Polymer powders comprising in copolymerized form a) one or more vinyl aromatic comonomers, b) one or more 1,3-diene comonomers, c) from 0.1 to 15 percent, based on the total comonomer weight, of one or more comonomers selected from the group consisting of ethylenically unsaturated mono- and dicarboxylic acids and their salts, wherein at least 75 percent of the total number of carboxylic groups present in the polymer are located at the surface of the polymer particles in the powder and at least 75 percent of the carboxylic groups located at the surface of the polymer particles in powder are present in their salt form, and d) from 0 to 40 percent, based on the total comonomer weight, of one or more additional comonomers have an excellent redispersibility in water.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: June 23, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Margarita Perello, Harmut Kühn, Jürgen Dombrowski, Francois M. Casati, Etienne Lazarus, Gerold Lohmüller
  • Publication number: 20150038653
    Abstract: Embodiments include polymer polyol dispersions which include a polyol liquid phase and solid particle phase. Embodiments include methods of making the polymer polyol dispersions. The polymer polyol dispersions are essentially free of tin, have a solid content of between about 20 and 50 wt % based on the total weight of the polymer polyol dispersion, and have a viscosity at 20C of less than 9000 mPas. The solid particle phase has more than 90% by weight of particles in the solid particle phase having a particle diameter of less than 5 ?m.
    Type: Application
    Filed: March 14, 2013
    Publication date: February 5, 2015
    Inventors: Ricco B. Borella, Paul Cookson, Daniel Hoehener, Francois M. Casati
  • Publication number: 20150004389
    Abstract: Embodiments of the invention provide for viscoelastic polyurethane foams. The foams are made from reaction system which includes (a) an isocyanate reactive component, (b) a isocyanate component, (c) one or more blowing agents, (d) a catalyst component, and (e) a silicone based surfactant. The isocyanate reactive component includes at least (i) from 25 to 80% by weight of at least one polyoxyethylene capped polyoxypropylene/polyoxyethylene polyol having a combined number average equivalent weight from 1300 to 1700, a polyoxyethylene percentage of between 75% and 95% by weight of the combined amounts of polyoxypropylene and polyoxyethylene, and a primary OH percentage of between 80 and 95% of the total number of OH groups of the polyoxyethylene capped polyoxypropylene/polyoxyethylene polyol, and (ii) from 5 to 30% by weight of the isocyanate reactive component of at least one low functionality polyol having a functionality of between 1.5 and 2.
    Type: Application
    Filed: September 20, 2012
    Publication date: January 1, 2015
    Inventors: Elisa Corinti, Andrea Benvenuti, Alessio Sabadini, Jean-Paul Masy, Francois M. Casati, Brian Dickie
  • Publication number: 20140329925
    Abstract: Embodiments of the invention include a polymer polyol dispersions. The polymer dispersions include a reaction product of a reaction system, where the reaction system includes: at least one polyol, at least one phosphorus based flame retardant having at least one active hydrogen attached to a nitrogen or oxygen atom, at least one of a co-reactant having an equivalent weight of up to 400 and at least one active hydrogen attached to a nitrogen or oxygen atom, at least one catalyst, and at least one polyisocyanate.
    Type: Application
    Filed: December 17, 2012
    Publication date: November 6, 2014
    Applicants: The Dow Chemical Company, Dow Europe GmbH
    Inventors: Paul A Cookson, Daniel Hoehener, Francois M. Casati
  • Patent number: 8822581
    Abstract: Polystyrene is dispersed into a polyol via a mechanical dispersion process. A stabilizer is present to stabilize the dispersed polymer particles. The stabilizer includes a copolymer of (1) from 10 to 70% by weight of a branched polyol which has a molecular weight of from 4000 to 20,000, from 0.2 to about 1.2 polymerizable ethylenically unsaturated groups per molecule and from about 3 to about 8 hydroxyl groups per molecule with (2) from 30 to 90% by weight of styrene or a mixture of styrene and one or more other low molecular weight monomers.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: September 2, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Hanno R. Van der Wal, Ronald Wevers, Freddy Van Damme, Francois M. Casati, Georges Kanaan, Fernand Pla, Sandrine Hoppe, Bart Noordover, Christian Fonteix
  • Publication number: 20140206787
    Abstract: A polyglycerine initiated polyether polyol exhibiting a final functionality less than the nominal functionalities of the polyol initiator wherein the initiator is a polyglycerine formed by the polymerization of glycerin having an HEW less than about 35 and exhibiting a nominal functionality between 2 and 16 is provided. Also provided is a process for producing a polyfunctional polyurethane by the reaction of a mixture containing a polyol based on polyglycerine initiator wherein between 5 wt % and 100 wt % of the total initiator is polyglycerine having a nominal functionality between 2 and 16, at least one organic isocyanate, an amine and/or a metal salt catalyst, and optionally a blowing agent. Also provided is a flexible polyurethane foam comprising a reaction product of a polyglycerine or formed by the glycidol polymerization of glycerin, at least one organic isocyanate, and an amine catalyst.
    Type: Application
    Filed: February 25, 2011
    Publication date: July 24, 2014
    Applicant: Dow Global Technologies LLC
    Inventors: Francois M. Casati, Esther E. Quintanilla, Hanno R. Van der Wal, Timothy A. Morley, Peter Mullaert
  • Patent number: 8765828
    Abstract: Polyurethane foams of improved resilience properties can be produced from: a) a polyisocyanate, b) a polyether polyol or polyester polyol, c) a blowing agent, d) one or more optional additives or auxiliary compounds, and e) a redispersible polymer powder based on a homopolymer or copolymer of one or more monomers from the group consisting of vinyl esters of un-branched or branched alkylcarboxylic acids having from 1 to 15 carbon atoms, methacrylic esters and acrylic esters of alcohols having from 1 to 15 carbon atoms, vinylaromatics, olefins, dienes and vinyl halides.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: July 1, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Francois M. Casati, Margarita Perello
  • Publication number: 20140163197
    Abstract: Ethylene carbonate is polymerized by itself or together with another cyclic monomer such as 1,2-propylene oxide in the presence of a double metal cyanide catalyst. Most of the ethylene carbonate adds to the chain to form a terminal carbonate group, which decarboxylates to produce a hydroxyethyl group at the end of the polymer chain. The polymerization of more ethylene carbonate onto the chain end results in the formation of poly(ethyleneoxy) units. Therefore, the process provides a method for making poly(ethyleneoxy) polymers without the need to polymerize ethylene oxide. The process is useful for making polyethers that are useful as water-absorbable polymers, surfactants and as raw materials for polyurethanes. The process is also useful for increasing the primary hydroxyl content of a polyether.
    Type: Application
    Filed: August 15, 2012
    Publication date: June 12, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Esther E. Quintanilla, Hanno R. Van Der Wal, Daniel C. Floyd, Myriam Linke, Francois M. Casati, Carlos M. Villa, Jean-Paul Masy, Ricco B. Borella, Paul Cookson
  • Patent number: 8680211
    Abstract: A process for preparing a hybrid polyester-polyether polyol comprises contacting a carboxyl group-containing component and an epoxide, optionally in the presence of one or more of a double metal cyanide catalyst, a superacid catalyst, a metal salt of a superacid catalyst and/or a tertiary amine catalyst, under conditions such that a hybrid polyester-polyether polyol is formed. The hybrid polyester-polyether polyol offers the advantages of both ester and ether functionalities when used in a polyurethane formulation, thus enhancing physical properties. The process results in products having narrow polydispersity, a low acid number and unsaturation, and reduced byproduct formation, particularly when the double metal cyanide catalyst is employed.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: March 25, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Pavel L. Shutov, Jorge Jimenez, Hanno R. Van der Wal, Francois M. Casati
  • Publication number: 20140051779
    Abstract: Embodiments of the invention provide for polymer polyols and methods of producing polymer polyols. Methods include providing at least one first composition which includes at least one polyol, at least one isocyanate non-reactive seed population, and at least one of a co-reactant having an equivalent weight of up to 400 and at least one active hydrogen attached to a nitrogen or oxygen atom. The at least one isocyanate non-reactive seed population includes less than about 5% by weight of the total weight of the first composition, and the seed population has a maximum particle diameter of less than 10 The first composition is combined with at least one polyisocyanate under mixing to form at least one of a polyurea, polyurethane, and a polyurethane-urea particle population dispersed in the first composition, wherein at least 90% by weight of the particle population has a particle diameter of less than 100 ?m.
    Type: Application
    Filed: May 9, 2012
    Publication date: February 20, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Francois M. Casati, Paul Cookson, Hanno R. Van dr Wal
  • Publication number: 20140051778
    Abstract: Embodiments of the invention include a method of producing polymer polyol dispersions is. The method includes providing at least one reaction system, and the reaction system includes: a) at least one polyol, b) at least one seed population, c) at least one catalyst, d) at least one co-reactant having an equivalent weight of up to 400 and at least one active hydrogen attached to a nitrogen or oxygen atom, and e) at least one polyisocyanate. The at least one seed population includes less than about 5% by weight of the total weight of the at least one reaction system and includes seed particles having diameters of less than 5 ?m. The at least one reaction mixture reacts to form at least one of a polyurea and polyurethane-urea particle population in the at least one polyol without the addition of any catalysts comprising tin. The polymer polyol dispersion has a solids content of at least 15% of the weight of the polymer polyol dispersion.
    Type: Application
    Filed: May 9, 2012
    Publication date: February 20, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Paul Cookson, Ricco B. Borella, Daniel Hoehener, Francois M. Casati
  • Patent number: 8535476
    Abstract: A process for producing a laminate or composite structure comprises heat bonding a substrate to a polyurethane foam, wherein the polyurethane foam is produced using at least one natural oil derived polyol as at least a portion of the polyol used in making the polyurethane foam. The resulting laminate or composite structure comprises at least one foam produced from a polyol composition comprising at least one natural oil derived polyol and at least one substrate with the interface between the foam and substrate being that formed by heat bonding. The invention also includes any article comprising such a laminate or composite structure.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: September 17, 2013
    Assignees: Dow Global Technologies LLC, Dow Brasil Sudeste Industrial Ltda.
    Inventors: Francois M. Casati, Weber D. Felippe, Saeed Siavoshani
  • Patent number: 8394868
    Abstract: A polyol prepolymer having at least one urethane group is disclosed. The polyol preopolymer is a reaction product of at least one isocyanate and a polyol blend, where the polyol blend includes at least one conventional petroleum-based polyol and at least one natural oil based polyol. The polyol prepolymer may be used in producing flexible polyurethane foams.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: March 12, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Francois M. Casati, Imran Munshi
  • Publication number: 20130034683
    Abstract: Insulating units are disclosed which are prepared by a cavity-filling, fast-gelling rigid polyurethane foam based on a formulation comprising a polyol component which contains at least 5 weight percent of an amine-initiated polyols and 1.4 to 4 parts by weight of a catalyst package whereby the catalyst package contains at least one amine catalyst and the weight percent nitrogen present in the amine-initiated polyol to weight percent nitrogen present in the catalyst system is from 2 to 8. The formulation is injected into the cavity and the pressure in the cavity is subjected to reduced atmospheric pressure to achieve the rigid foam having a thermal conductivity of less than about 19 mW/mK at 10° C. average plate temperature.
    Type: Application
    Filed: April 14, 2011
    Publication date: February 7, 2013
    Inventors: Hans Kramer, Vanni Parenti, Francois M. Casati, Timothy A. Morley
  • Publication number: 20130035467
    Abstract: A process for preparing a hybrid polyester-polyether polyol comprises contacting a carboxyl group-containing component and an epoxide, optionally in the presence of one or more of a double metal cyanide catalyst, a superacid catalyst, a metal salt of a superacid catalyst and/or a tertiary amine catalyst, under conditions such that a hybrid polyester-polyether polyol is formed. The hybrid polyester-polyether polyol offers the advantages of both ester and ether functionalities when used in a polyurethane formulation, thus enhancing physical properties. The process results in products having narrow polydispersity, a low acid number and unsaturation, and reduced byproduct formation, particularly when the double metal cyanide catalyst is employed.
    Type: Application
    Filed: April 21, 2011
    Publication date: February 7, 2013
    Inventors: Pavel L. Shutov, Jorge Jimenez, Hanno R. Van der Wal, Francois M. Casati