Patents by Inventor Frank Schlesener

Frank Schlesener has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9551941
    Abstract: The invention relates to an illumination system for an EUV lithography device, comprising: a first facet mirror having facet elements that reflect EUV radiation, and a second facet mirror having facet elements for reflecting the EUV radiation reflected by the first facet mirror onto an illumination field. At least one of the facet elements of the first facet mirror or of the second facet mirror is designed as a diffractive optical element for diffracting the EUV radiation. In particular, at least one of the facet elements of the second facet mirror is designed as a diffractive optical element for illuminating only a part of the illumination field. The invention also relates to an EUV lithography device comprising such an illumination system, and to a facet mirror comprising at least one diffractive facet element.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: January 24, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Johannes Ruoff, Ingo Saenger, Joerg Zimmermann, Daniel Kraehmer, Christoph Hennerkes, Frank Schlesener
  • Patent number: 9507269
    Abstract: An illumination optical unit for projection lithography has a first polarization mirror device to reflect and polarize of illumination light. A second mirror device, which is disposed downstream of the polarization mirror device reflects an illumination light beam. At least one drive device is operatively connected to at least one of the two mirror devices. The two mirror devices are displaceable relative to one another via the drive device between a first relative position, which leads to a first beam geometry of the illumination light beam after reflection at the second mirror device, and a second relative position, which leads to a second beam geometry of the illumination light beam after reflection at the second mirror device, which is different from the first beam geometry. This results in a flexible predefinition of different illumination geometries, in particular of different illumination geometries with rotationally symmetrical illumination.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: November 29, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Christoph Hennerkes, Ingo Saenger, Joerg Zimmermann, Johannes Ruoff, Martin Meier, Frank Schlesener
  • Patent number: 9500954
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes an optical integrator having a plurality of light entrance facets each being associated with a secondary light source. A spatial light modulator has a light exit surface and transmit or to reflect impinging projection light in a spatially resolved manner. A pupil forming unit directs projection light on the spatial light modulator. An objective images the light exit surface of the spatial light modulator onto the light entrance facets of the optical integrator. The light exit surface of the optical light modulator includes groups of object areas being separated by areas that are not imaged on the light entrance facets. The objective combines images of the object areas so that the images of the object areas abut on the optical integrator.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: November 22, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Vladimir Davydenko, Thomas Korb, Frank Schlesener, Stefanie Hilt, Wolfgang Hoegele
  • Patent number: 9500956
    Abstract: The disclosure relates to optical systems of a microlithographic projection exposure apparatus, and to a microlithographic exposure method. According to an aspect of the disclosure, an optical system has a light source, a ray-splitting optical element, which splits a light ray incident on this element when the projection exposure apparatus is in operation into a first partial ray and a second partial ray, with the first and the second partial ray having mutually orthogonal polarization directions, and at least one ray-deflecting optical element for generating a desired polarized illumination setting from the first partial ray and the second partial ray, wherein the ray-splitting optical element is arranged such that light incident on this ray-splitting optical element when the projection exposure apparatus is in operation has a degree of polarization of less than one.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: November 22, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Ingo Saenger, Joerg Zimmermann, Johannes Ruoff, Martin Meier, Frank Schlesener, Christoph Hennerkes
  • Patent number: 9488918
    Abstract: The invention relates to an optical system for a microlithographic projection exposure apparatus, and to a microlithographic exposure method. An optical system for a microlithographic projection exposure apparatus comprises at least one mirror arrangement having a plurality of mirror elements, wherein these mirror elements can be adjusted independently of one another for changing an angular distribution of the light reflected by the mirror arrangement, and a polarization-influencing optical arrangement which is arranged downstream of the mirror arrangement in the light propagation direction, wherein the polarization-influencing optical arrangement reflects a light beam incident on the arrangement in at least two reflections, which do not occur in a common plane, for at least one angular distribution of the light reflected by the mirror arrangement.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: November 8, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Ingo Saenger, Frank Schlesener
  • Patent number: 9477157
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes a light source to produce projection light beam, and a first and a second diffractive optical element between the light source and a pupil plane of the illumination system. The diffractive effect produced by each diffractive optical element depends on the position of a light field that is irradiated by the projection light on the diffractive optical elements. A displacement mechanism changes the mutual spatial arrangement of the diffractive optical elements. In at least one of the mutual spatial arrangements, which can be obtained with the help of the displacement mechanism, the light field extends both over the first and the second diffractive optical element. This makes it possible to produce in a simple manner continuously variable illumination settings.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: October 25, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Patra, Stig Bieling, Markus Deguenther, Frank Schlesener, Markus Schwab
  • Patent number: 9448489
    Abstract: The invention relates to an optical system for a microlithographic projection exposure apparatus, and to a microlithographic exposure method. An optical system for a microlithographic projection exposure apparatus comprises at least one mirror arrangement having a plurality of mirror elements, wherein these mirror elements can be adjusted independently of one another for changing an angular distribution of the light reflected by the mirror arrangement, and a polarization-influencing optical arrangement which is arranged downstream of the mirror arrangement in the light propagation direction, wherein the polarization-influencing optical arrangement reflects a light beam incident on the arrangement in at least two reflections, which do not occur in a common plane, for at least one angular distribution of the light reflected by the mirror arrangement.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: September 20, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Ingo Saenger, Frank Schlesener
  • Patent number: 9442385
    Abstract: The invention relates to an optical system for a microlithographic projection exposure apparatus, and to a microlithographic exposure method. An optical system for a microlithographic projection exposure apparatus comprises a polarization-influencing optical arrangement, wherein the polarization-influencing optical arrangement comprises at least one first array of first polarization-influencing elements and a second array of second polarization-influencing elements, wherein the first and second arrays are arranged successively in the light propogation direction, wherein the first and second polarization-influencing elements in each case have a birefringence that is dependent on the presence of an electric field, and wherein the first polarization-influencing elements and the second polarization-influencing elements are transverse Pockels cells.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: September 13, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Ingo Saenger, Frank Schlesener
  • Publication number: 20160246180
    Abstract: A method of operating an illumination system of a microlithographic projection exposure apparatus is provided. A set of illumination parameters that describe properties of a light bundle which converges at a point on a mask to be illuminated by the illumination system is first determined. Optical elements whose optical effect on the illumination parameters can be modified as a function of control commands are furthermore determined, as well as sensitivities with which the illumination parameters react to an adjustment of the optical elements, induced by the control commands. The control commands are then determined while taking the previously determined sensitivities into account, such that deviations of the illumination parameters from predetermined target illumination parameters satisfy a predetermined minimisation criterion. These control commands are applied to the optical elements, before the mask is illuminated.
    Type: Application
    Filed: May 4, 2016
    Publication date: August 25, 2016
    Inventors: Oliver Natt, Frank Schlesener
  • Patent number: 9411245
    Abstract: The disclosure provides a polarization-influencing optical arrangement that includes a first retardation element and a second retardation element. The optical arrangement is configurable so that a polarization-influencing effect of the first retardation element corresponds to an effect of a first lambda/2 plate having a first fast axis of the birefringence and a polarization-influencing effect of the second retardation element corresponds to an effect of a second lambda/2 plate having a second fast axis of the birefringence. An angle between the first fast axis and the second fast axis is 45°±5°.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: August 9, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Ingo Saenger, Frank Schlesener
  • Publication number: 20160209759
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes a pupil forming unit directing light on a spatial light modulator that transmits or reflects impinging light in a spatially resolved manner. An objective images a light exit surface of the spatial light modulator on light entrance facets of an optical integrator so that an image of an object area on the light exit surface completely coincides with one of the light entrance facets. The pupil forming unit and the spatial light modulator are controlled so that the object area is completely illuminated by the pupil forming unit and projection light associated with a point in the object area is at least partially and variably prevented from impinging on the one of the light entrance facets.
    Type: Application
    Filed: March 31, 2016
    Publication date: July 21, 2016
    Inventors: Markus Deguenther, Vladimir Davydenko, Thomas Korb, Frank Schlesener, Stefanie Hilt, Wolfgang Hoegele
  • Publication number: 20160161858
    Abstract: An illumination system for microlithography serves to illuminate an illumination field with illumination light of a primary light source. A first raster arrangement has bundle-forming first raster elements which are arranged in a first plane of the illumination system or adjacent to the plane. The first raster arrangement serves to generate a raster arrangement of secondary light sources. A transmission optics serves for superimposed transmission of the illumination light of the secondary light sources into the illumination field. The transmission optics has a second raster arrangement with bundle-forming second raster elements. In each case one of the raster elements of the first raster arrangement is allocated to one of the raster elements of the second raster arrangement for guiding a partial bundle of an entire bundle of illumination light. The first raster arrangement for example has at least two types (I, II, III) of the first raster elements which have different bundle-influencing effects.
    Type: Application
    Filed: February 1, 2016
    Publication date: June 9, 2016
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Patent number: 9341957
    Abstract: A method of operating an illumination system of a microlithographic projection exposure apparatus is provided. A set of illumination parameters that describe properties of a light bundle which converges at a point on a mask to be illuminated by the illumination system is first determined. Optical elements whose optical effect on the illumination parameters can be modified as a function of control commands are furthermore determined, as well as sensitivities with which the illumination parameters react to an adjustment of the optical elements, induced by the control commands. The control commands are then determined while taking the previously determined sensitivities into account, such that deviations of the illumination parameters from predetermined target illumination parameters satisfy a predetermined minimization criterion. These control commands are applied to the optical elements, before the mask is illuminated.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: May 17, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Oliver Natt, Frank Schlesener
  • Patent number: 9310690
    Abstract: An illumination system includes an optical integrator having a plurality of light entrance facets, whose images at least substantially superimpose in a mask plane. A spatial light modulator transmits or reflects impinging projection light in a spatially resolved manner. A pupil forming unit directs projection light onto the spatial light modulator. An objective images a light exit surface of the spatial light modulator onto the light entrance facets of the optical integrator so that an image of an object area on the light exit surface completely coincides with one of the light entrance facets. A control unit controls the spatial light modulator such that along a scan direction a length of an image, which is formed on a mask from a light pattern in the object area, gradually increases at a beginning of a scan cycle and gradually decreases at the end of the scan cycle.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: April 12, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Vladimir Davydenko, Thomas Korb, Frank Schlesener, Stefanie Hilt, Wolfgang Hoegele
  • Publication number: 20160077444
    Abstract: A method of operating an illumination system of a microlithographic projection exposure apparatus is provided. A set of illumination parameters that describe properties of a light bundle which converges at a point on a mask to be illuminated by the illumination system is first determined. Optical elements whose optical effect on the illumination parameters can be modified as a function of control commands are furthermore determined, as well as sensitivities with which the illumination parameters react to an adjustment of the optical elements, induced by the control commands. The control commands are then determined while taking the previously determined sensitivities into account, such that deviations of the illumination parameters from predetermined target illumination parameters satisfy a predetermined minimisation criterion. These control commands are applied to the optical elements, before the mask is illuminated.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 17, 2016
    Inventors: Oliver Natt, Frank Schlesener
  • Patent number: 9280060
    Abstract: A raster arrangement includes first and second types of raster elements which have different bundle-influencing effects. There is a distance step between a first raster area and a second raster area. The first raster area comprises a raster element of the first raster element type. The second raster area includes a raster element of the second raster element type. The raster arrangement is configured to be used in a microlithography illumination system.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: March 8, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Publication number: 20160004164
    Abstract: The invention relates to an illumination system for an EUV lithography device, comprising: a first facet mirror having facet elements that reflect EUV radiation, and a second facet mirror having facet elements for reflecting the EUV radiation reflected by the first facet mirror onto an illumination field. At least one of the facet elements of the first facet mirror or of the second facet mirror is designed as a diffractive optical element for diffracting the EUV radiation. In particular, at least one of the facet elements of the second facet mirror is designed as a diffractive optical element for illuminating only a part of the illumination field. The invention also relates to an EUV lithography device comprising such an illumination system, and to a facet mirror comprising at least one diffractive facet element.
    Type: Application
    Filed: July 10, 2015
    Publication date: January 7, 2016
    Inventors: Johannes Ruoff, Ingo Saenger, Joerg Zimmermann, Daniel Kraehmer, Christoph Hennerkes, Frank Schlesener
  • Publication number: 20160004168
    Abstract: A method for measuring an optical symmetry property on a microlithographic projection exposure apparatus (10) together with a microlithographic projection exposure apparatus and an associated microlithographic measurement mask are disclosed. The method includes arranging at least one measurement structure (60; 66) in an exposure beam path (32) of the projection exposure apparatus, wherein the measurement structure includes a pinhole stop (62) and a diffraction grating (64) arranged within an aperture (63) of the pinhole stop. Furthermore, the method includes measuring an intensity of a diffracted radiation generated at the diffraction grating (64) after interaction of the radiation with at least one optical element (22) of the projection exposure apparatus.
    Type: Application
    Filed: September 14, 2015
    Publication date: January 7, 2016
    Inventors: Jens Timo NEUMANN, Frank SCHLESENER
  • Patent number: 9217931
    Abstract: A method of operating an illumination system of a microlithographic projection exposure apparatus is provided. A set of illumination parameters that describe properties of a light bundle which converges at a point on a mask to be illuminated by the illumination system is first determined. Optical elements whose optical effect on the illumination parameters can be modified as a function of control commands are furthermore determined, as well as sensitivities with which the illumination parameters react to an adjustment of the optical elements, induced by the control commands. The control commands are then determined while taking the previously determined sensitivities into account, such that deviations of the illumination parameters from predetermined target illumination parameters satisfy a predetermined minimization criterion. These control commands are applied to the optical elements, before the mask is illuminated.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: December 22, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Oliver Natt, Frank Schlesener
  • Patent number: 9182677
    Abstract: An optical system of a microlithographic projection exposure apparatus comprises at least one mirror arrangement, having a plurality of mirror elements which are adjustable independently of one another for varying an angular distribution of the light reflected by the mirror arrangement, a polarization-influencing optical arrangement, by which, for a light beam passing through during the operation of the projection exposure apparatus, different polarization states can be set via the light beam cross section, and a retarder arrangement, which is arranged upstream of the polarization-influencing optical arrangement in the light propagation direction and at least partly compensates for a disturbance of the polarization distribution that is present elsewhere in the projection exposure apparatus, wherein the polarization-influencing optical arrangement has optical components which are adjustable in their relative position with respect to one another, wherein different output polarization distributions can be produc
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: November 10, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Frank Schlesener, Ingo Saenger