Patents by Inventor Frank-Thomas Lentes

Frank-Thomas Lentes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11396471
    Abstract: A method for the production of glass or glass ceramic elements from flat glass or glass ceramic parts is provided where the edges of the glass or glass ceramic elements are treated by a combination of two processes. The flat glass or glass ceramic element with an edge surface connecting the two side surfaces is produced. The edge surface has at least one first elongated, strip-shaped edge region and at least one second elongated strip-shaped edge region, which are formed by a ground edge. The edge regions extend in the longitudinal direction along the edge surface and along the side surfaces. The first edge region has elongated parallel filamentary damages that are parallel and adjacent to one another and, in particular, spaced apart equidistantly, in the longitudinal direction thereof extending transversely to the side surfaces and along the surface of the first edge region.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: July 26, 2022
    Assignee: SCHOTT AG
    Inventors: Volker Plapper, Fabian Wagner, Andreas Ortner, Albrecht Seidl, Frank-Thomas Lentes
  • Publication number: 20220001496
    Abstract: A method for filamentation of a dielectric workpiece has a workpiece with a thickness between 0.5 and 20 mm is provided. The workpiece has boundary surfaces delimiting the workpiece. The thickness of the workpiece varies spatially and/or at least one of the boundary surfaces delimiting the workpiece has at least one curvature with a radius of curvature between 0.1 ?m and 10 m. The dielectric workpiece can have a specially formed edge.
    Type: Application
    Filed: September 17, 2021
    Publication date: January 6, 2022
    Applicant: SCHOTT AG
    Inventors: Andreas Ortner, Fabian Wagner, Albrecht Seidl, Frank-Thomas Lentes
  • Publication number: 20210340051
    Abstract: A plate-like glass element includes a pair of opposite side faces and an opening having a transverse dimension of at least 200 ?m. The opening is delimited by an edge. The edge has a plurality of rounded, substantially hemispherical depressions that adjoin one another. The plurality of rounded, substantially hemispherical depressions having abutting concave roundings which form ridges.
    Type: Application
    Filed: July 14, 2021
    Publication date: November 4, 2021
    Applicant: Schott AG
    Inventors: Andreas Ortner, Andreas Roters, Frank-Thomas Lentes, Lutz Parthier, Markus Heiß-Choquet, Ulrich Peuchert, Fabian Wagner, Florian Resch, Laura Brückbauer, Matthias Jotz, Vanessa Hiller
  • Publication number: 20210340050
    Abstract: A method includes: providing a plate-like glass element having side faces and an ultrashort pulse laser having a laser beam; directing the laser beam onto one of the side faces; concentrating the laser beam by focusing optics to form an elongated focus in the glass element; producing a filament-shaped flaw in a volume of the glass element by a radiated-in energy of the laser beam, a longitudinal direction of which runs transverse to one of the side faces, and the ultrashort pulse laser radiates in a pulse or a pulse packet having at least two successive laser pulses to produce the filament-shaped flaw; widening the filament-shaped flaw to form a channel by exposing the glass element to an etching including an etching medium which removes glass at a rate of less than 8 ?m per hour; and introducing rounded, hemispherical depressions in a wall of the channel by the etching.
    Type: Application
    Filed: July 14, 2021
    Publication date: November 4, 2021
    Applicant: Schott AG
    Inventors: Andreas Ortner, Andreas Roters, Frank-Thomas Lentes, Lutz Parthier, Markus Heiß-Choquet, Ulrich Peuchert, Fabian Wagner, Florian Resch, Laura Brückbauer, Matthias Jotz, Vanessa Hiller
  • Patent number: 11161766
    Abstract: A method is provided that includes producing filamentary damages in a volume of a glass or glass ceramic element adjacently aligned along a separation line and extend obliquely relative to a surface of the glass or glass ceramic element; and separating a portion from the glass or glass ceramic element along the separation line. The step of producing the filamentary damages includes directing laser pulses of an ultrashort pulse laser obliquely on the surface so that the laser pulses have a light propagation direction that extends obliquely relative to the surface and so that the filamentary damages resulting from the laser pulses have the longitudinal extension that extends obliquely relative to the surface; generating a plasma within the volume with the laser pulses; and displacing the laser pulses at points of incidence over the surface along the separation line.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: November 2, 2021
    Assignee: SCHOTT AG
    Inventors: Andreas Ortner, Albrecht Seidl, Frank-Thomas Lentes, Fabian Wagner
  • Patent number: 11148231
    Abstract: A method for filamentation of a dielectric workpiece has a workpiece with a thickness between 0.5 and 20 mm is provided. The workpiece has boundary surfaces delimiting the workpiece. The thickness of the workpiece varies spatially and/or at least one of the boundary surfaces delimiting the workpiece has at least one curvature with a radius of curvature between 0.1 ?m and 10 m. The dielectric workpiece can have a specially formed edge.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: October 19, 2021
    Assignee: SCHOTT AG
    Inventors: Andreas Ortner, Albrecht Seidl, Frank-Thomas Lentes, Fabian Wagner
  • Patent number: 11091383
    Abstract: A plate-like glass element including a pair of opposite side faces and at least one channel introduced into the glass of the glass element. The at least one channel joins the side faces and opens into the side faces. The at least one channel has a rounded wall and a transverse dimension of less than 100 ?m. The at least one channel extends in a longitudinal direction that runs transverse to the side faces. The rounded wall of the at least one channel has a plurality of rounded, substantially hemispherical depressions.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: August 17, 2021
    Assignee: Schott AG
    Inventors: Andreas Ortner, Andreas Roters, Frank-Thomas Lentes, Lutz Parthier, Markus Heiß-Choquet, Ulrich Peuchert, Fabian Wagner, Florian Resch, Laura Brückbauer, Matthias Jotz, Vanessa Hiller
  • Publication number: 20210187496
    Abstract: A glass container is provided that includes a tube, a circular bottom, and a longitudinal axis. A curved glass heel extends from an outer end the bottom to the first end of the tube. The two-dimensional distance h(x,y) between a contact plane and the outer surface. The two-dimensional distance is measured in a direction parallel to the axis. The slope magnitude of the outer surface at the given position x,y is given by ?{square root over ((dh/dx)2+(dh/dy)2)}. The 75% quantile of values that have been determined for the term ?{square root over ((dh/dx)2+(dh/dy)2)}×d1/h(xy)delta for all given positions x,y within a circular area having a radius of 0.4×d2/2 and that correspond to the centre is less than 4100 ?m/mm. The adjacent positions x,y increase stepwise by 200 ?m, and h(x,y)delta=h(x,y)max?h(x,y)min, h(x,y)max is a maximum value for h(x,y) and h(x,y)min is a minimum value for h(x,y) being determined in that circular area.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 24, 2021
    Applicants: SCHOTT AG, SCHOTT Schweiz AG
    Inventors: Robert Frost, Doris Moseler, Günter Weidmann, Roman Huhn, Jens Ulrich Thomas, Alexander Humbertjean, Frank-Thomas Lentes, Andreas Langsdorf
  • Publication number: 20210187497
    Abstract: A glass container is provided that includes a tube, a circular bottom, and a longitudinal axis. A curved glass heel extends from an outer end the bottom to the first end of the tube. The outer surface has a topography defined by a function ?(x) that is an azimuthal average of a distance between a contact plane and the outer surface at any given position located on a circle having the centre and the radius |x|. The values ? for ?(x) are determined for a plurality of circles the radius of which increases stepwise by 500 ?m starting with a circle around the centre having a radius of 500 ?m. The values ? are determined in a range from x=?0.4×d2/2 to x=+0.4×d2/2, d2 having a size such that at least 4 values ? are determined and can be fitted with a curvature function h ^ ? ( x ) = - c × x 2 1 + 1 - c 2 × x 2 + h 0 .
    Type: Application
    Filed: December 18, 2020
    Publication date: June 24, 2021
    Applicants: SCHOTT AG, SCHOTT Schweiz AG
    Inventors: Alexander Humbertjean, Tobias Wetzel, Robert Frost, Jens Ulrich Thomas, Frank-Thomas Lentes, Andreas Langsdorf, Doris Moseler, Günter Weidmann, Roman Huhn
  • Publication number: 20210149090
    Abstract: The present disclosure relates to a layered optical composite, in particular for use in an augmented reality device. In particular, the disclosure relates to a layered optical composite and a process for its preparation, a device comprising the layered optical composite and a process for its preparation, and the use of a layered optical composite in an augmented reality device. The present disclosure relates to a layered optical composite comprising: a. a substrate having a front face and a back face, b. a coating comprising: i. a type T layer, and ii. a type C region comprising one or more type C layers; in which the substrate has: i. a thickness tG in the range from 0.2 to 1.2 mm; ii. a refractive index nG at a wavelength ? in the range from 1.6 to 2.4; and iii. an optical absorption coefficient KG at the wavelength ? of less than 10 cm?1; in which the type C layers individually and independently have: i. a thickness tC in the range from 9 to 250 nm; ii.
    Type: Application
    Filed: September 28, 2020
    Publication date: May 20, 2021
    Applicant: SCHOTT AG
    Inventors: Kurt Nattermann, Jens Ulrich Thomas, Frank-Thomas Lentes, Thorsten Damm, Peter Naß
  • Publication number: 20210096376
    Abstract: The present disclosure relates to a device, in particular an augmented reality device. In particular, the disclosure relates to a device, a kit, a process for making the device, and a process for making a visual impression. The present disclosure relates to a device including: a. a grouping of x optical elements, each optical element having a front face and a back face, the x optical elements being arranged in a stack from first to last in which the front face of an optical element faces the back face of the next optical element, and b. a spacer region made of a material having a refractive index below 1.
    Type: Application
    Filed: September 28, 2020
    Publication date: April 1, 2021
    Applicant: SCHOTT AG
    Inventors: Simone Monika Ritter, Antoine Carré, Peter Naß, Frank-Thomas Lentes
  • Publication number: 20210025984
    Abstract: The disclosure relates to a glass window for optical systems, in particular for LiDAR systems, in which the glass window has a curved form. For length scales between 0.1 mm and 15 mm, at least 50% of the area of the glass window has a geometrical slope error SEG for which the following is true: SEG<?2.3·10?6·2·R0[1/mm]+7.3·10?4.
    Type: Application
    Filed: July 22, 2020
    Publication date: January 28, 2021
    Inventors: Nikolaus Schultz, Boris Eichhorn, Frank-Thomas Lentes, Jens Ulrich Thomas, Volker Plapper
  • Publication number: 20200407263
    Abstract: A method for the production of glass or glass ceramic elements from flat glass or glass ceramic parts is provided where the edges of the glass or glass ceramic elements are treated by a combination of two processes. The flat glass or glass ceramic element with an edge surface connecting the two side surfaces is produced. The edge surface has at least one first elongated, strip-shaped edge region and at least one second elongated strip-shaped edge region, which are formed by a ground edge. The edge regions extend in the longitudinal direction along the edge surface and along the side surfaces. The first edge region has elongated parallel filamentary damages that are parallel and adjacent to one another and, in particular, spaced apart equidistantly, in the longitudinal direction thereof extending transversely to the side surfaces and along the surface of the first edge region.
    Type: Application
    Filed: September 15, 2020
    Publication date: December 31, 2020
    Applicant: SCHOTT AG
    Inventors: Volker PLAPPER, Fabian WAGNER, Andreas ORTNER, Albrecht SEIDL, Frank-Thomas LENTES
  • Publication number: 20200376603
    Abstract: A method for preparing a workpiece for separation is provided that includes providing a workpiece that is transparent for light of a pulsed laser beam, splitting the laser beam into two partial beams using an optical system, directing both partial beams onto the workpiece, and moving the workpiece and the partial beams relative to one another. The partial beams are directed onto the workpiece incident at different angles to the normal of the irradiated surface and superimposed inside the workpiece such that the partial beams interfere with one another to form a sequence of intensity maxima inside the workpiece. The intensity at the intensity maxima is sufficiently high to modify the material of the workpiece so that a chain-like periodic pattern of material modifications is formed along a path defining a separation line.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Applicant: SCHOTT AG
    Inventors: Andreas ORTNER, Clemens KUNISCH, Frank-Thomas LENTES, Jens Ulrich THOMAS, Kurt NATTERMANN, Michael KLUGE
  • Publication number: 20200369551
    Abstract: A method for processing glass elements is provided. The method includes introducing a perforation line for parting a glass element introduced into the glass element during or after a hot processing process at an elevated temperature of at least 100° C. Spaced-apart filamentary flaws are introduced into the glass element along the predetermined course of the perforation line by a pulsed laser beam of an ultrashort pulse laser, and, during or after the introduction of the filamentary flaws, the glass element is cooled down so as to produce a temperature gradient, which induces a mechanical stress at the filamentary flaws, whereby the breaking force required for parting the glass element along the perforation line is reduced.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 26, 2020
    Applicant: SCHOTT AG
    Inventors: Andreas Ortner, Ulla Trinks, Fabian Wagner, Carsten Etz, Daniela Seiler, Michael Kluge, Peter Czepelka, Frank-Thomas Lentes, André Witzmann, Reiner Artmann
  • Patent number: 10807902
    Abstract: A method for the production of glass or glass ceramic elements from flat glass or glass ceramic parts is provided where the edges of the glass or glass ceramic elements are treated by a combination of two processes. The flat glass or glass ceramic element with an edge surface connecting the two side surfaces is produced. The edge surface has at least one first elongated, strip-shaped edge region and at least one second elongated strip-shaped edge region, which are formed by a ground edge. The edge regions extend in the longitudinal direction along the edge surface and along the side surfaces. The first edge region has elongated parallel filamentary damages that are parallel and adjacent to one another and, in particular, spaced apart equidistantly, in the longitudinal direction thereof extending transversely to the side surfaces and along the surface of the first edge region.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: October 20, 2020
    Assignee: SCHOTT AG
    Inventors: Volker Plapper, Fabian Wagner, Andreas Ortner, Albrecht Seidl, Frank-Thomas Lentes
  • Publication number: 20200290152
    Abstract: A method provides for producing modifications in or on a transparent workpiece using a laser processing device. The laser processing device has a short pulse or ultrashort pulse laser that emits laser radiation having a wavelength in the transparency range of the workpiece and which has a beam-shaping optical unit for beam shaping for focusing the laser radiation. The transparent workpiece is composed of a material that has a plurality of phases, of which at least two phases have different dielectric constants, of which in turn the one phase is a phase embedded in the form of particles, which phase is substantially surrounded by the other phase, and wherein the product of the volume of the particles specified in cubic nanometers and the ratio of the absolute value of the difference of the two different dielectric constants to the dielectric constant of the surrounding phase is greater than 500.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Applicant: Schott AG
    Inventors: Andreas Ortner, Niklas Bisch, Fabian Wagner, Albrecht Seidl, Frank-Thomas Lentes
  • Patent number: 10702948
    Abstract: A method provides for producing modifications in or on a transparent workpiece using a laser processing device. The laser processing device has a short pulse or ultrashort pulse laser that emits laser radiation having a wavelength in the transparency range of the workpiece and which has a beam-shaping optical unit for beam shaping for focusing the laser radiation. The transparent workpiece is composed of a material that has a plurality of phases, of which at least two phases have different dielectric constants, of which in turn the one phase is a phase embedded in the form of particles, which phase is substantially surrounded by the other phase, and wherein the product of the volume of the particles specified in cubic nanometers and the ratio of the absolute value of the difference of the two different dielectric constants to the dielectric constant of the surrounding phase is greater than 500.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: July 7, 2020
    Assignee: Schott AG
    Inventors: Andreas Ortner, Niklas Bisch, Fabian Wagner, Albrecht Seidl, Frank-Thomas Lentes
  • Publication number: 20200199007
    Abstract: A method is provided that includes producing filamentary damages in a volume of a glass or glass ceramic element adjacently aligned along a separation line and extend obliquely relative to a surface of the glass or glass ceramic element; and separating a portion from the glass or glass ceramic element along the separation line. The step of producing the filamentary damages includes directing laser pulses of an ultrashort pulse laser obliquely on the surface so that the laser pulses have a light propagation direction that extends obliquely relative to the surface and so that the filamentary damages resulting from the laser pulses have the longitudinal extension that extends obliquely relative to the surface; generating a plasma within the volume with the laser pulses; and displacing the laser pulses at points of incidence over the surface along the separation line.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Applicant: SCHOTT AG
    Inventors: Andreas ORTNER, Albrecht SEIDL, Frank-Thomas LENTES, Fabian WAGNER
  • Publication number: 20200101561
    Abstract: Devices and methods for processing a workpiece along a predetermined processing line are provided. The device includes: a pulsed, polychromatic laser beam generator; an optical arrangement; and a moving device. The laser beam generator generates a laser beam along a beam direction. The optical arrangement generates a focal line along the beam direction. The optical arrangement has a chromatic aberration for wavelength-dependent focusing of the laser beam and a filter for wavelength-dependent filtering of the laser beam. The moving device generates relative movement between the laser beam and the workpiece along the predetermined processing line.
    Type: Application
    Filed: November 18, 2019
    Publication date: April 2, 2020
    Applicant: SCHOTT AG
    Inventors: Andreas ORTNER, Fabian WAGNER, Albrecht SEIDL, Simon SCHMITT, Frank-Thomas LENTES, Jens Ulrich THOMAS