Patents by Inventor Franz Zach
Franz Zach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250103019Abstract: A system includes a wafer shape metrology sub-system configured to perform one or more shape measurements on post-bonding pairs of wafers. The system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller receives a set of measured distortion patterns. The controller applies a bonder control model to the measured distortion patterns to determine a set of overlay distortion signatures. The bonder control model is made up of a set of orthogonal wafer signatures that represent the achievable adjustments. The controller determines whether the set of overlay distortion signatures associated with the measured distortion patterns are outside tolerance limits provides one or more feedback adjustments to the bonder tool.Type: ApplicationFiled: December 9, 2024Publication date: March 27, 2025Inventors: Franz Zach, Mark D. Smith, Roel Gronheid
-
Patent number: 12197137Abstract: A wafer shape metrology system includes a wafer shape metrology sub-system configured to perform one or more stress-free shape measurements on a first wafer, a second wafer, and a post-bonding pair of the first and second wafers. The wafer shape metrology system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller is configured to receive stress-free shape measurements from the wafer shape sub-system; predict overlay between one or more features on the first wafer and the second wafer based on the stress-free shape measurements of the first wafer, the second wafer, and the post-bonding pair of the first wafer and the second wafer; and provide a feedback adjustment to one or more process tools based on the predicted overlay. Additionally, feedforward and feedback adjustments may be provided to one or more process tools.Type: GrantFiled: November 27, 2023Date of Patent: January 14, 2025Assignee: KLA CorporationInventors: Franz Zach, Mark D. Smith, Xiaomeng Shen, Jason Saito, David Owen
-
Patent number: 12164277Abstract: A system includes a wafer shape metrology sub-system configured to perform one or more shape measurements on post-bonding pairs of wafers. The system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller receives a set of measured distortion patterns. The controller applies a bonder control model to the measured distortion patterns to determine a set of overlay distortion signatures. The bonder control model is made up of a set of orthogonal wafer signatures that represent the achievable adjustments. The controller determines whether the set of overlay distortion signatures associated with the measured distortion patterns are outside tolerance limits provides one or more feedback adjustments to the bonder tool.Type: GrantFiled: October 9, 2023Date of Patent: December 10, 2024Assignee: KLA CorporationInventors: Franz Zach, Mark D. Smith, Roel Gronheid
-
Publication number: 20240094642Abstract: A wafer shape metrology system includes a wafer shape metrology sub-system configured to perform one or more stress-free shape measurements on a first wafer, a second wafer, and a post-bonding pair of the first and second wafers. The wafer shape metrology system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller is configured to receive stress-free shape measurements from the wafer shape sub-system; predict overlay between one or more features on the first wafer and the second wafer based on the stress-free shape measurements of the first wafer, the second wafer, and the post-bonding pair of the first wafer and the second wafer; and provide a feedback adjustment to one or more process tools based on the predicted overlay. Additionally, feedforward and feedback adjustments may be provided to one or more process tools.Type: ApplicationFiled: November 27, 2023Publication date: March 21, 2024Inventors: Franz Zach, Mark D. Smith, Xiaomeng Shen, Jason Saito, David Owen
-
Publication number: 20240053721Abstract: A system includes a wafer shape metrology sub-system configured to perform one or more shape measurements on post-bonding pairs of wafers. The system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller receives a set of measured distortion patterns. The controller applies a bonder control model to the measured distortion patterns to determine a set of overlay distortion signatures. The bonder control model is made up of a set of orthogonal wafer signatures that represent the achievable adjustments. The controller determines whether the set of overlay distortion signatures associated with the measured distortion patterns are outside tolerance limits provides one or more feedback adjustments to the bonder tool.Type: ApplicationFiled: October 9, 2023Publication date: February 15, 2024Inventors: Franz Zach, Mark D. Smith, Roel Gronheid
-
Patent number: 11829077Abstract: A wafer shape metrology system includes a wafer shape metrology sub-system configured to perform one or more stress-free shape measurements on a first wafer, a second wafer, and a post-bonding pair of the first and second wafers. The wafer shape metrology system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller is configured to receive stress-free shape measurements from the wafer shape sub-system; predict overlay between one or more features on the first wafer and the second wafer based on the stress-free shape measurements of the first wafer, the second wafer, and the post-bonding pair of the first wafer and the second wafer; and provide a feedback adjustment to one or more process tools based on the predicted overlay. Additionally, feedforward and feedback adjustments may be provided to one or more process tools.Type: GrantFiled: January 28, 2021Date of Patent: November 28, 2023Assignee: KLA CorporationInventors: Franz Zach, Mark D. Smith, Xiaomeng Shen, Jason Saito, David Owen
-
Patent number: 11782411Abstract: A system includes a wafer shape metrology sub-system configured to perform one or more shape measurements on post-bonding pairs of wafers. The system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller receives a set of measured distortion patterns. The controller applies a bonder control model to the measured distortion patterns to determine a set of overlay distortion signatures. The bonder control model is made up of a set of orthogonal wafer signatures that represent the achievable adjustments. The controller determines whether the set of overlay distortion signatures associated with the measured distortion patterns are outside tolerance limits provides one or more feedback adjustments to the bonder tool.Type: GrantFiled: January 31, 2022Date of Patent: October 10, 2023Assignee: KLA CorporationInventors: Franz Zach, Mark D. Smith, Roel Gronheid
-
Publication number: 20230030116Abstract: A wafer shape metrology system includes a wafer shape metrology sub-system configured to perform stress-free shape measurements on an active wafer, a carrier wafer, and a bonded device wafer. The active wafer includes functioning logic circuitry and the carrier wafer is electrically passive. The wafer shape metrology system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller is configured to receive stress-free shape measurements; determine overlay distortion between features on the active wafer and the carrier wafer; and convert the overlay distortion to a feed-forward correction for one or more lithographic scanners. The controller is also configured to determine a control range for a bonder or lithography scanner; predict an overlay distortion pattern; calculate an optimal control signature based on a minimal achievable overlay; and provide a feed-forward correction to the bonder or lithography scanner based on the calculated optimal control signature.Type: ApplicationFiled: January 31, 2022Publication date: February 2, 2023Inventors: Franz Zach, Mark D. Smith, Roel Gronheid
-
Publication number: 20230035201Abstract: A system includes a wafer shape metrology sub-system configured to perform one or more shape measurements on post-bonding pairs of wafers. The system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller receives a set of measured distortion patterns. The controller applies a bonder control model to the measured distortion patterns to determine a set of overlay distortion signatures. The bonder control model is made up of a set of orthogonal wafer signatures that represent the achievable adjustments. The controller determines whether the set of overlay distortion signatures associated with the measured distortion patterns are outside tolerance limits provides one or more feedback adjustments to the bonder tool.Type: ApplicationFiled: January 31, 2022Publication date: February 2, 2023Inventors: Franz Zach, Mark D. Smith, Roel Gronheid
-
Publication number: 20230032406Abstract: A wafer shape metrology system includes a wafer shape metrology sub-system configured to perform one or more stress-free shape measurements on a bonded pair of wafers, where the bonded pair of wafers are bonded with a bonding tool. The wafer shape metrology sub-system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller is configured to receive stress-free shape measurements from the wafer shape sub-system; convert the stress-free shape measurements into an overlay distortion pattern; detect one or more localized deviations in the bonded pair of wafers in order to identify one or more contaminant particles on the bonding tool; and report the one or more localized deviations in the bonded pair of wafers.Type: ApplicationFiled: January 31, 2022Publication date: February 2, 2023Inventors: Franz Zach, Mark D. Smith, Roel Gronheid
-
Publication number: 20220187718Abstract: A wafer shape metrology system includes a wafer shape metrology sub-system configured to perform one or more stress-free shape measurements on a first wafer, a second wafer, and a post-bonding pair of the first and second wafers. The wafer shape metrology system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller is configured to receive stress-free shape measurements from the wafer shape sub-system; predict overlay between one or more features on the first wafer and the second wafer based on the stress-free shape measurements of the first wafer, the second wafer, and the post-bonding pair of the first wafer and the second wafer; and provide a feedback adjustment to one or more process tools based on the predicted overlay. Additionally, feedforward and feedback adjustments may be provided to one or more process tools.Type: ApplicationFiled: January 28, 2021Publication date: June 16, 2022Applicant: KLA CorporationInventors: Franz Zach, Mark D. Smith, Xiaomeng Shen, Jason Saito, David Owen
-
Patent number: 10386829Abstract: A system for controlling an etch process includes an etching tool, a metrology tool, and a controller. The etching tool is controllable via a set of control parameters and may execute a plurality of etch recipes containing values of the set of control parameters. The controller may direct the etching tool to execute a plurality of etch recipes on a plurality of metrology targets; direct the metrology tool to generate metrology data indicative of two or more etch characteristics on the plurality of metrology targets; determine one or more relationships between the two or more etch characteristics and the set of control parameters based on the metrology data; and generate, based on the one or more relationships, a particular etch recipe to constrain one of the two or more etch characteristics and maintain the remainder of the two or more etch characteristics within defined bounds.Type: GrantFiled: September 15, 2016Date of Patent: August 20, 2019Assignee: KLA-Tencor CorporationInventor: Franz Zach
-
Publication number: 20170084473Abstract: A system for controlling an etch process includes and etching tool, a metrology tool, and a controller. The etching tool is controllable via a set of control parameters and may execute a plurality of etch recipes containing values of the set of control parameters. The controller may direct the etching tool to execute a plurality of etch recipes on a plurality of metrology targets; direct the metrology tool to generate metrology data indicative of two or more etch characteristics on the plurality of metrology targets; determine one or more relationships between the two or more etch characteristics and the set of control parameters based on the metrology data; and generate, based on the one or more relationships, a particular etch recipe to constrain one of the two or more etch characteristics and maintain the remainder of the two or more etch characteristics within defined bounds.Type: ApplicationFiled: September 15, 2016Publication date: March 23, 2017Inventor: Franz Zach
-
Patent number: 7923786Abstract: A first aspect of the present invention is a method of forming an isolation structure including: (a) providing a semiconductor substrate; (b) forming a buried N-doped region in the substrate; (c) forming a vertical trench in the substrate, the trench extending into the N-doped region; (d) removing the N-doped region to form a lateral trench communicating with and extending perpendicular to the vertical trench; and (e) at least partially filling the lateral trench and filling the vertical trench with one or more insulating materials.Type: GrantFiled: October 12, 2007Date of Patent: April 12, 2011Assignee: International Business Machines CorporationInventors: An L. Steegen, Maheswaran Surendra, Hsing-Jen Wann, Ying Zhang, Franz Zach, Robert Wong
-
Patent number: 7784019Abstract: A method for modifying an integrated circuit design layout is presented and can include placing a plurality of target points in the proximity of a polygon representing a portion of the integrated circuit design; modifying the target point placement for some or all of the placed target points; fitting a curve to the target points; and redefining the portion of the integrated circuit as a contour defined by the fitted curve to modify the design layout. In some applications the modified design layout can be used as a target for an optical proximity correction algorithm or for other purposes.Type: GrantFiled: November 1, 2007Date of Patent: August 24, 2010Assignee: Cadence Design Systems, Inc.Inventor: Franz Zach
-
Publication number: 20080086715Abstract: An optical proximity correction method is provided using a modified merit function based upon yield. Known failure mechanisms related to layout geometries are used to derive yield functions based upon distance values between layout features, such as, edge features. In comparing the edge points on the predicted layout pattern with the corresponding point on the design layout pattern, a yield test is first undertaken before movement of the points on the predicted layout pattern to a position of higher yield. Where yield is acceptable, no further movement is made. Where incremental movement of points results in coming within acceptable proximity before acceptable yield is reached, the point is flagged for further consideration.Type: ApplicationFiled: November 26, 2007Publication date: April 10, 2008Inventor: Franz Zach
-
Publication number: 20080029818Abstract: A first aspect of the present invention is a method of forming an isolation structure including: (a) providing a semiconductor substrate; (b) forming a buried N-doped region in the substrate; (c) forming a vertical trench in the substrate, the trench extending into the N-doped region; (d) removing the N-doped region to form a lateral trench communicating with and extending perpendicular to the vertical trench; and (e) at least partially filling the lateral trench and filling the vertical trench with one or more insulating materials.Type: ApplicationFiled: October 12, 2007Publication date: February 7, 2008Inventors: An Steegen, Maheswaran Surendra, Hsing-Jen Wann, Ying Zhang, Franz Zach, Robert Wong
-
Patent number: 7326983Abstract: A first aspect of the present invention is a method of forming an isolation structure including: (a) providing a semiconductor substrate; (b) forming a buried N-doped region in the substrate; (c) forming a vertical trench in the substrate, the trench extending into the N-doped region; (d) removing the N-doped region to form a lateral trench communicating with and extending perpendicular to the vertical trench; and (e) at least partially filling the lateral trench and filling the vertical trench with one or more insulating materials.Type: GrantFiled: March 17, 2005Date of Patent: February 5, 2008Assignee: International Business Machines CorporationInventors: An L. Steegen, Maheswaran Surendra, Hsing-Jen Wann, Ying Zhang, Franz Zach, Robert Wong
-
Publication number: 20080022255Abstract: An optical proximity correction method is provided using a modified merit function based upon yield. Known failure mechanisms related to layout geometries are used to derive yield functions based upon distance values between layout features, such as, edge features. In comparing the edge points on the predicted layout pattern with the corresponding point on the design layout pattern, a yield test is first undertaken before movement of the points on the predicted layout pattern to a position of higher yield. Where yield is acceptable, no further movement is made. Where incremental movement of points results in coming within acceptable proximity before acceptable yield is reached, the point is flagged for further consideration.Type: ApplicationFiled: August 10, 2007Publication date: January 24, 2008Inventor: Franz Zach
-
Publication number: 20070143733Abstract: A method for synthesizing a photomask data set from a given target layout, including the following steps: (a) providing a set of target polygons for the target layout; (b) fitting a smooth curve to a target polygon of the set of target polygons, the curve having a set of etch-target points; (c) moving the etch target points according to a model of an etch process to produce a set of lithography-target points; and (d) synthesizing a photomask data set based on a model of a lithography process and the set of lithography-target points.Type: ApplicationFiled: October 2, 2006Publication date: June 21, 2007Inventors: Franz Zach, Jesus Carrero, Bayram Yenikaya, Gokhan Percin, Xuelong Cao, Abdurrahman Sezginer