Patents by Inventor Fred C. Redeker

Fred C. Redeker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10456886
    Abstract: Implementations disclosed herein generally relate to polishing articles and methods for manufacturing polishing articles used in polishing processes. More specifically, implementations disclosed herein relate to porous polishing pads produced by processes that yield improved polishing pad properties and performance, including tunable performance. Additive manufacturing processes, such as three-dimensional printing processes provides the ability to make porous polishing pads with unique properties and attributes.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: October 29, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sivapackia Ganapathiappan, Nag B. Patibandla, Rajeev Bajaj, Daniel Redfield, Fred C. Redeker, Mahendra C. Orilall, Boyi Fu, Mayu Yamamura, Ashwin Chockalingam
  • Publication number: 20190299357
    Abstract: A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a base material from a first nozzle and an additive material from a second nozzle and solidifying the base and additive material to form a solidified pad material.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 3, 2019
    Inventors: Mahendra Christopher ORILALL, Timothy MICHAELSON, Kasiraman KRISHNAN, Rajeev BAJAJ, Nag B. PATIBANDLA, Daniel REDFIELD, Fred C. REDEKER, Gregory E. MENK
  • Patent number: 10384330
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: August 20, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Khanna, Jason G. Fung, Mario Cornejo, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Ashavani Kumar, Venkat Hariharan, Gregory E. Menk, Fred C. Redeker, Nag B. Patibandla, Hou T. Ng, Robert E. Davenport, Amritanshu Sinha
  • Publication number: 20190224809
    Abstract: Implementations disclosed herein generally relate to polishing articles and methods for manufacturing polishing articles used in polishing processes. More specifically, implementations disclosed herein relate to porous polishing pads produced by processes that yield improved polishing pad properties and performance, including tunable performance. Additive manufacturing processes, such as three-dimensional printing processes provides the ability to make porous polishing pads with unique properties and attributes.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Sivapackia GANAPATHIAPPAN, Nag B. PATIBANDLA, Rajeev BAJAJ, Daniel REDFIELD, Fred C. REDEKER, Mahendra C. ORILALL, Boyi FU, Mayu YAMAMURA, Ashwin CHOCKALINGAM
  • Patent number: 10322491
    Abstract: A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a base material from a first nozzle and an additive material from a second nozzle and solidifying the base and additive material to form a solidified pad material.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: June 18, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Mahendra Christopher Orilall, Timothy Michaelson, Kasiraman Krishnan, Rajeev Bajaj, Nag B. Patibandla, Daniel Redfield, Fred C. Redeker, Gregory E. Menk
  • Patent number: 10199281
    Abstract: A substrate for use in fabrication of an integrated circuit has a layer with a plurality of conductive interconnects. The substrate includes a semiconductor body, a dielectric layer disposed over the semiconductor body, a plurality of conductive lines of a conductive material disposed in first trenches in the dielectric layer to provide the conductive interconnects, and a closed conductive loop structure of the conductive material disposed in second trenches in the dielectric layer. The closed conductive loop is not electrically connected to any of the conductive lines.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: February 5, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Wei Lu, Zhihong Wang, Wen-Chiang Tu, Zhefu Wang, Hassan G. Iravani, Boguslaw A. Swedek, Fred C. Redeker, William H. McClintock
  • Publication number: 20190030678
    Abstract: Embodiments described herein relate to integrated abrasive (IA) polishing pads, and methods of manufacturing IA polishing pads using, at least in part, surface functionalized abrasive particles in an additive manufacturing process, such as a 3D inkjet printing process. In one embodiment, a method of forming a polishing article includes dispensing a first plurality of droplets of a first precursor, curing the first plurality of droplets to form a first layer comprising a portion of a sub-polishing element, dispensing a second plurality of droplets of the first precursor and a second precursor onto the first layer, and curing the second plurality of droplets to form a second layer comprising portions of the sub-polishing element and portions of a plurality of polishing elements. Here, the second precursor includes functionalized abrasive particles having a polymerizable group chemically bonded to surfaces thereof.
    Type: Application
    Filed: July 23, 2018
    Publication date: January 31, 2019
    Inventors: Ashavani KUMAR, Ashwin CHOCKALINGAM, Sivapackia GANAPATHIAPPAN, Rajeev BAJAJ, Boyi FU, Daniel REDFIELD, Nag B. PATIBANDLA, Mario Dagio CORNEJO, Amritanshu SINHA, Yan ZHAO, Ranga Rao ARNEPALLI, Fred C. REDEKER
  • Publication number: 20190009388
    Abstract: A method of fabricating a chemical mechanical polishing pad includes introducing polymer precursors containing acrylate functional groups into a mold, providing abrasive particles and a photo-initiator in the polymer precursors to form a mixture, and while the mixture is contained between a bottom plate and a top cover of the mold, exposing the mixture to ultraviolet radiation through a transparent section of the mold to cause the polymer precursors to form radicals, forming a polymer matrix from the polymer precursor by causing the radicals to cross-link with one another. The polishing layer includes the polymer matrix having the abrasive particles dispersed therein.
    Type: Application
    Filed: September 13, 2018
    Publication date: January 10, 2019
    Inventors: Mahendra Christopher Orilall, Rajeev Bajaj, Fred C. Redeker
  • Patent number: 10086500
    Abstract: A method of fabricating a chemical mechanical polishing pad includes introducing polymer precursors containing acrylate functional groups into a mold, providing abrasive particles and a photo-initiator in the polymer precursors to form a mixture, and while the mixture is contained between a bottom plate and a top cover of the mold, exposing the mixture to ultraviolet radiation through a transparent section of the mold to cause the polymer precursors to form radicals, forming a polymer matrix from the polymer precursor by causing the radicals to cross-link with one another. The polishing layer includes the polymer matrix having the abrasive particles dispersed therein.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: October 2, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Mahendra Christopher Orilall, Rajeev Bajaj, Fred C. Redeker
  • Publication number: 20180207770
    Abstract: A method and apparatus for polishing a substrate that includes a polishing article comprising a polymeric sheet having a raised surface texture, which is formed on the surface of the polymeric sheet is provided. According to one or more implementations of the present disclosure, an advanced polishing article has been developed, which does not require abrasive pad conditioning. In some implementations of the present disclosure, the advanced polishing article comprises a polymeric sheet having a polishing surface with a raised surface texture or “micro-features” and/or a plurality of grooves or “macro-features” formed in the polishing surface. In some implementations, the raised surface texture is embossed, etched, machined or otherwise formed in the polishing surface prior to installing and using the advanced polishing article in a polishing system. In one implementation, the raised features have a height within one order of magnitude of the features removed from the substrate during polishing.
    Type: Application
    Filed: January 19, 2018
    Publication date: July 26, 2018
    Inventors: Robert D. TOLLES, Gregory E. MENK, Eric DAVEY, You WANG, Huyen Karen TRAN, Fred C. REDEKER, Veera Raghava Reddy KAKIREDDY, Ekaterina MIKHAYLICHENKO, Jay GURUSAMY
  • Publication number: 20180166347
    Abstract: A substrate for use in fabrication of an integrated circuit has a layer with a plurality of conductive interconnects. The substrate includes a semiconductor body, a dielectric layer disposed over the semiconductor body, a plurality of conductive lines of a conductive material disposed in first trenches in the dielectric layer to provide the conductive interconnects, and a closed conductive loop structure of the conductive material disposed in second trenches in the dielectric layer. The closed conductive loop is not electrically connected to any of the conductive lines.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 14, 2018
    Inventors: Wei Lu, Zhihong Wang, Wen-Chiang Tu, Zhefu Wang, Hassan G. Iravani, Boguslaw A. Swedek, Fred C. Redeker, William H. McClintock
  • Publication number: 20180161954
    Abstract: Embodiments of the disclosure generally provide polishing pads includes a composite pad body and methods for forming the polishing pads. One embodiment provides a polishing pad including a composite pad body. The composite pad body includes one or more first features formed from a first material or a first composition of materials, and one or more second features formed from a second material or a second composition of materials, wherein the one or more first features and the one or more second features are formed by depositing a plurality of layers comprising the first material or first composition of materials and second material or second composition of materials.
    Type: Application
    Filed: January 22, 2018
    Publication date: June 14, 2018
    Inventors: Rajeev BAJAJ, Kasiraman KRISHNAN, Mahendra C. ORILALL, Daniel REDFIELD, Fred C. REDEKER, Nag B. PATIBANDLA, Gregory E. MENK, Jason G. FUNG, Russell Edward PERRY, Robert E. DAVENPORT
  • Patent number: 9911664
    Abstract: A substrate for use in fabrication of an integrated circuit has a layer with a plurality of conductive interconnects. The substrate includes a semiconductor body, a dielectric layer disposed over the semiconductor body, a plurality of conductive lines of a conductive material disposed in first trenches in the dielectric layer to provide the conductive interconnects, and a closed conductive loop structure of the conductive material disposed in second trenches in the dielectric layer. The closed conductive loop is not electrically connected to any of the conductive lines.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: March 6, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Wei Lu, Zhihong Wang, Wen-Chiang Tu, Zhefu Wang, Hassan G. Iravani, Boguslaw A. Swedek, Fred C. Redeker, William H. McClintock
  • Publication number: 20180056477
    Abstract: A polishing system includes a platen having a top surface, an annular polishing pad supported on the platen, a carrier head to hold a substrate in contact with the annular polishing pad, a support structure from which the carrier head is suspended and which is configured to move the hold the carrier head laterally across the polishing pad, and a controller. The platen is rotatable about an axis of rotation that passes through approximately the center of the platen, and the inner edge of the annular polishing pad is positioned around the axis of rotation. The controller is configured to cause the support structure to position the carrier head such that a portion of the substrate overhangs the inner edge of the annular polishing pad while the substrate is contacting the polishing pad.
    Type: Application
    Filed: August 30, 2017
    Publication date: March 1, 2018
    Inventors: Paul D. Butterfield, Thomas H. Osterheld, Jeonghoon Oh, Shou-Sung Chang, Steven M. Zuniga, Fred C. Redeker
  • Publication number: 20180043613
    Abstract: A polishing article manufacturing system includes a feed section and a take-up section, the take-up section comprising a supply roll having a polishing article disposed thereon for a chemical mechanical polishing process, a print section comprising a plurality of printheads disposed between the feed section and the take-up section, and a curing section disposed between the feed section and the take-up section, the curing section comprising one or both of a thermal curing device and an electromagnetic curing device.
    Type: Application
    Filed: October 2, 2017
    Publication date: February 15, 2018
    Inventors: Kasiraman KRISHNAN, Daniel REDFIELD, Russell Edward PERRY, Gregory E. MENK, Rajeev BAJAJ, Fred C. REDEKER, Nag B. PATIBANDLA, Mahendra C. ORILALL, Jason G. FUNG
  • Patent number: 9873180
    Abstract: Embodiments of the disclosure generally provide polishing pads includes a composite pad body and methods for forming the polishing pads. One embodiment provides a polishing pad including a composite pad body. The composite pad body includes one or more first features formed from a first material or a first composition of materials, and one or more second features formed from a second material or a second composition of materials, wherein the one or more first features and the one or more second features are formed by depositing a plurality of layers comprising the first material or first composition of materials and second material or second composition of materials.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: January 23, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Kasiraman Krishnan, Mahendra C. Orilall, Daniel Redfield, Fred C. Redeker, Nag B. Patibandla, Gregory E. Menk, Jason G. Fung, Russell Edward Perry, Robert E. Davenport
  • Publication number: 20180009079
    Abstract: The present disclosure relates generally to a polishing article, and apparatus and methods of chemical mechanical polishing substrates using the polishing article. In some embodiments, the polishing article, such as a polishing pad, includes multiple layers in which one or more layers (i.e., at least the top layer) includes a plurality of nano-fibers that a positioned to contact a substrate during a polishing process. In one embodiment, a polishing article comprises a layer having a thickness less than about 0.032 inches, and the layer comprising fibers having a diameter of about 10 nanometers to about 200 micro meters.
    Type: Application
    Filed: January 29, 2016
    Publication date: January 11, 2018
    Inventors: Robert D. TOLLES, Mahendra C. ORILALL, Fred C. REDEKER, Rajeev BAJAJ
  • Patent number: 9776361
    Abstract: A polishing article manufacturing system includes a feed section and a take-up section, the take-up section comprising a supply roll having a polishing article disposed thereon for a chemical mechanical polishing process, a print section comprising a plurality of printheads disposed between the feed section and the take-up section, and a curing section disposed between the feed section and the take-up section, the curing section comprising one or both of a thermal curing device and an electromagnetic curing device.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: October 3, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kasiraman Krishnan, Daniel Redfield, Russell Edward Perry, Gregory E. Menk, Rajeev Bajaj, Fred C. Redeker, Nag B. Patibandla, Mahendra C. Orilall, Jason G. Fung
  • Publication number: 20170203406
    Abstract: Implementations disclosed herein generally relate to polishing articles and methods for manufacturing polishing articles used in polishing processes. More specifically, implementations disclosed herein relate to porous polishing pads produced by processes that yield improved polishing pad properties and performance, including tunable performance. Additive manufacturing processes, such as three-dimensional printing processes provides the ability to make porous polishing pads with unique properties and attributes.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 20, 2017
    Inventors: Sivapackia GANAPATHIAPPAN, Nag B. PATIBANDLA, Rajeev BAJAJ, Daniel REDFIELD, Fred C. REDEKER, Mahendra C. ORILALL, Boyi FU, Mayu YAMAMURA
  • Patent number: 9486893
    Abstract: Among other things, a method comprises polishing a surface of a substrate by applying a pressure between the surface of a substrate and a surface of a polishing pad. The surface of the polishing pad defines one or more grooves separated by one or more partition regions. The one or more grooves have an initial depth before the polishing starts and extend from an initial outer surface of the one or more partition regions to an initial bottom of the one or more grooves. The method also comprises removing material below an initial bottom of the one or more grooves such that a distance between an outer surface of the one or more partition regions and a bottom of the one or more grooves remain substantially the same as the initial depth.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: November 8, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Hung Chen, Rajeev Bajaj, Brian J. Brown, Robert T. Lum, Fred C. Redeker