Patents by Inventor Fred Redeker

Fred Redeker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050284767
    Abstract: First and second electrodes are disposed at first and second locations, respectively, proximate to a periphery of a wafer support, wherein the first and second location are substantially opposed to each other relative to the wafer support. Each of the first and second electrodes can be moved to electrically connect with and disconnect from a wafer held by the wafer support. An anode is disposed over and proximate to the wafer such that a meniscus of electroplating solution is maintained between the anode and the wafer. As the anode moves over the wafer from the first location to the second location, an electric current is applied through the meniscus between the anode and the wafer. Also, as the anode is moved over the wafer, the first and second electrodes are controlled to connect with the wafer while ensuring that the anode does not pass over an electrode that is connected.
    Type: Application
    Filed: June 28, 2004
    Publication date: December 29, 2005
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, Bob Maraschin, John Boyd, Fred Redeker, Carl Woods
  • Publication number: 20050284748
    Abstract: An electroplating head including a chamber having a fluid entrance and a fluid exit is provided. The chamber is configured to contain a flow of electroplating solution from the fluid entrance to the fluid exit. The electroplating head also includes an anode disposed within the chamber. The anode is configured to be electrically connected to a power supply. The electroplating head further includes a porous resistive material disposed at the fluid exit such that the flow of electroplating solution is required to traverse through the porous resistive material.
    Type: Application
    Filed: June 28, 2004
    Publication date: December 29, 2005
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, Bob Maraschin, John Boyd, Fred Redeker
  • Publication number: 20050245181
    Abstract: A carrier head for chemical mechanical polishing is described. The carrier head includes a backing assembly, a housing and a damping material. The backing assembly includes a substrate support surface. The housing is connectable to a drive shaft to rotate with the drive shaft about a rotation axis. In one implementation, the damping material is in a load path between the backing assembly and the housing to reduce transmission of vibrations from the backing assembly to the housing.
    Type: Application
    Filed: January 28, 2005
    Publication date: November 3, 2005
    Inventors: Hung Chen, Shijian Li, John White, Ramin Emami, Fred Redeker, Steven Zuniga, Ramakrishna Cheboli
  • Publication number: 20050150454
    Abstract: An improved deposition chamber (2) includes a housing (4) defining a chamber (18) which houses a substrate support (14). A mixture of oxygen and SiF4 is delivered through a set of first nozzles (34) and silane is delivered through a set of second nozzles (34a) into the chamber around the periphery (40) of the substrate support. Silane (or a mixture of silane and SiF4) and oxygen are separately injected into the chamber generally centrally above the substrate from orifices (64, 76). The uniform dispersal of the gases coupled with the use of optimal flow rates for each gas results in uniformly low (under 3.4) dielectric constant across the film.
    Type: Application
    Filed: November 23, 2004
    Publication date: July 14, 2005
    Applicant: Applied Materials, Inc.
    Inventors: Shijian Li, Yaxin Wang, Fred Redeker, Tetsuya Ishikawa, Alan Collins
  • Publication number: 20050153561
    Abstract: A substrate is chemical mechanical polished with a high-selectivity slurry until the stop layer is at least partially exposed, and then the substrate is polished with a low-selectivity slurry until the stop layer is completely exposed.
    Type: Application
    Filed: March 8, 2005
    Publication date: July 14, 2005
    Inventors: Raymond Jin, Shijian Li, Fred Redeker, Thomas Osterheld
  • Publication number: 20050132515
    Abstract: An apparatus is provided for producing a wet region and corresponding dry region on a wafer. A proximity brush unit delivers fluids with a rotatable brush to produce the wet region on the wafer. As the proximity brush unit moves in a selected scan method across the wafer, a plurality of ports produces the dry region on the wafer. Further, the rotatable brush disposed within the proximity brush unit can rotate via mechanical gears or electromagnetic levitation. The selected scan method that produces the wet region and the dry region moves the proximity brush unit in a variety of methods including a radial scan, a linear scan, a spiral scan and a raster scan. To further produce a dry region during the selected scan method, the plurality of ports disposed on the surface of the proximity brush unit is on the trailing edges of the proximity head unit and the wafer.
    Type: Application
    Filed: December 18, 2003
    Publication date: June 23, 2005
    Applicant: Lam Research Corporation
    Inventors: John Boyd, Michael Orbock, Fred Redeker
  • Publication number: 20050132953
    Abstract: A apparatus for drying a substrate includes a vacuum manifold positioned adjacent to an edge wheel. The edge wheel includes an edge wheel groove for receiving a peripheral edge of a substrate, and the edge wheel is capable of rotating the substrate at a desired set velocity. The vacuum manifold includes a proximity end having one or more vacuum ports defined therein. The proximity end is positioned at least partially within the edge wheel groove, and using supplied vacuum removes fluids that accumulate in the edge wheel groove and prevents re-deposit of trapped fluids around the peripheral edge of the substrate.
    Type: Application
    Filed: December 22, 2003
    Publication date: June 23, 2005
    Applicant: Lam Research Corporation
    Inventors: Glenn Davis, Carl Woods, John Parks, Fred Redeker, Mike Ravkin, Michael Orbock
  • Publication number: 20050130415
    Abstract: Broadly speaking, a method and an apparatus are provided for depositing a material on a semiconductor wafer (“wafer”). More specifically, the method and apparatus provide for selective heating of a surface of the wafer exposed to an electroless plating solution. The selective heating is provided by applying radiant energy to the wafer surface. The selective heating of the wafer surface causes a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase at the interface in turn causes a plating reaction to occur at the wafer surface. Thus, material is deposited on the wafer surface through an electroless plating reaction that is initiated and controlled by varying the temperature of the wafer surface using an appropriately defined radiant energy source.
    Type: Application
    Filed: December 12, 2003
    Publication date: June 16, 2005
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, William Thie, Bob Maraschin, Fred Redeker, Joel Cook
  • Publication number: 20050126932
    Abstract: Broadly speaking, the present invention provides a method and an apparatus for planarizing a semiconductor wafer (“wafer”). More specifically, the present invention provides for depositing a planarizing layer over the wafer, wherein the planarizing layer serves to fill recessed areas present on a surface of the wafer. A planar member is positioned over and proximate to a top surface of the wafer. Positioning of the planar member serves to entrap electroless plating solution between the planar member and the wafer surface. Radiant energy is applied to the wafer surface to cause a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase in turn causes plating reactions to occur at the wafer surface. Material deposited through the plating reactions forms a planarizing layer that conforms to a planarity of the planar member.
    Type: Application
    Filed: December 12, 2003
    Publication date: June 16, 2005
    Applicant: Lam Research Corporation
    Inventors: Fred Redeker, John Boyd, Yezdi Dordi, William Thie, Bob Maraschin
  • Publication number: 20050042861
    Abstract: A planarized conductive material is formed over a substrate including narrow and wide features. The conductive material is formed through a succession of deposition processes. A first deposition process forms a first layer of the conductive material that fills the narrow features and at least partially fills the wide features. A second deposition process forms a second layer of the conductive material within cavities in the first layer. A flexible material can reduce a thickness of the first layer above the substrate while delivering a solution to the cavities to form the second layer therein. The flexible material can be a porous membrane attached to a pressurizable reservoir filled with the solution. The flexible material can also be a poromeric material wetted with the solution.
    Type: Application
    Filed: September 20, 2004
    Publication date: February 24, 2005
    Inventors: Fred Redeker, John Boyd
  • Publication number: 20050032381
    Abstract: Method and apparatus are provided for polishing substrates comprising conductive and low k dielectric materials with reduced or minimum substrate surface damage and delamination. In one aspect, a method is provided for processing a substrate including positioning a substrate having a conductive material formed thereon in a polishing apparatus having one or more rotational carrier heads and one or more rotatable platens, wherein the carrier head comprises a retaining ring and a membrane for securing a substrate and the platen has a polishing article disposed thereon, contacting the substrate surface and the polishing article to each other at a retaining ring contact pressure of about 0.4 psi or greater than a membrane pressure, and polishing the substrate to remove conductive material.
    Type: Application
    Filed: September 13, 2004
    Publication date: February 10, 2005
    Inventors: Yongsik Moon, David Mai, Kapila Wijekoon, Rajeev Bajaj, Rahul Surana, Yongqi Hu, Tony Kaushal, Shijian Li, Jui-Lung Li, Shi-Ping Wang, Gary Lam, Fred Redeker
  • Publication number: 20050026442
    Abstract: Method and apparatus are provided for polishing conductive materials with low dishing of features and reduced or minimal remaining residues. In one aspect, a method is provided for processing a substrate by polishing the substrate to remove bulk conductive material and polishing the substrate by a ratio of carrier head rotational speed to platen rotational speed of between about 2:1 and about 3:1 to remove residual conductive material. In another aspect, a method is provided for processing a substrate including polishing the substrate at a first relative linear velocity between about 600 mm/second and about 1900 mm/second at the center of the substrate, and polishing the substrate at a second relative linear velocity between about 100 mm/second and about 550 mm/second at the center of the substrate.
    Type: Application
    Filed: August 24, 2004
    Publication date: February 3, 2005
    Inventors: Shijian Li, Jui-Lung Li, Shi-Ping Wang, Gary Lam, David Mai, Fred Redeker