Patents by Inventor Frederick Dean Wilmot

Frederick Dean Wilmot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240076795
    Abstract: An ionically resistive ionically permeable element for use in an electroplating apparatus includes ribs to tailor hydrodynamic environment proximate a substrate during electroplating. In one implementation, the ionically resistive ionically permeable element includes a channeled portion that is at least coextensive with a plating face of the substrate, and a plurality of ribs extending from the substrate-facing surface of the channeled portion towards the substrate. Ribs include a first plurality of ribs of full maximum height and a second plurality of ribs of smaller maximum height than the full maximum height. In one implementation the ribs of smaller maximum height are disposed such that the maximum height of the ribs gradually increases in a direction from one edge of the element to the center of the element.
    Type: Application
    Filed: January 19, 2022
    Publication date: March 7, 2024
    Inventors: Stephen J. Banik, II, Gabriel Hay Graham, Bryan L. Buckalew, Robert Rash, Lee Peng Chua, Frederick Dean Wilmot, Chien-Chieh Lin
  • Publication number: 20230175161
    Abstract: A contact for providing a connection to a substrate in a substrate plating system includes a body having an arcuate shape. The arcuate shape of the body is configured to conform to a shape of at least a portion of a substrate arranged on a lip seal and a cup of the substrate plating system. A plurality of first contact fingers extend a first distance from the body. A plurality of second contact fingers extend a second distance from the body. The first distance is greater than the second distance.
    Type: Application
    Filed: April 12, 2021
    Publication date: June 8, 2023
    Inventors: Stephen J. BANIK, John Floyd OSTROWSKI, Bryan BUCKALEW, Robert RASH, Meng Wee Edwin GOH, Santosh KUMAR, Frederick Dean WILMOT
  • Publication number: 20220298667
    Abstract: A cell to process a substrate includes at least one chamber wall, a membrane frame, and a membrane. The at least one chamber wall is arranged to form a cavity below a holder of the substrate. The membrane frame is disposed on the at least one chamber wall and across the cavity. The membrane is supported by the membrane frame and separating a first electrolyte from a second electrolyte. The membrane includes a surface extending from a center of the cavity radially outward at an angle relative to a reference plane, and wherein the angle is greater than or equal to 0° and less than or equal to 3°.
    Type: Application
    Filed: September 2, 2020
    Publication date: September 22, 2022
    Inventors: Frederick Dean WILMOT, Robert RASH, Nirmal Shankar SIGAMANI, Gabriel GRAHAM
  • Patent number: 10968531
    Abstract: Methods described herein manage wafer entry into an electrolyte so that air entrapment due to initial impact of the wafer and/or wafer holder with the electrolyte is reduced and the wafer is moved in such a way that an electrolyte wetting wave front is maintained throughout immersion of the wafer also minimizing air entrapment.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: April 6, 2021
    Assignee: Novellus Systems, Inc.
    Inventors: Manish Ranjan, Shantinath Ghongadi, Frederick Dean Wilmot, Douglas Hill, Bryan L. Buckalew
  • Patent number: 10760178
    Abstract: Electroplating results can be improved by dynamically controlling the pressure in different parts of an electroplating apparatus. For example, a number of plating problems can be avoided by ensuring that the pressure in an anode chamber always remains slightly above the pressure in an ionically resistive element manifold, both during electroplating and during non-electroplating operations. This pressure differential prevents the membrane from stretching downward into the anode chamber.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: September 1, 2020
    Assignee: Lam Research Corporation
    Inventors: Stephen J. Banik, II, Bryan L. Buckalew, Frederick Dean Wilmot, Robert Rash
  • Publication number: 20200017989
    Abstract: Electroplating results can be improved by dynamically controlling the pressure in different parts of an electroplating apparatus. For example, a number of plating problems can be avoided by ensuring that the pressure in an anode chamber always remains slightly above the pressure in an ionically resistive element manifold, both during electroplating and during non-electroplating operations. This pressure differential prevents the membrane from stretching downward into the anode chamber.
    Type: Application
    Filed: July 12, 2018
    Publication date: January 16, 2020
    Inventors: Stephen J. Banik, II, Bryan L. Buckalew, Frederick Dean Wilmot, Robert Rash
  • Patent number: 10351968
    Abstract: Apparatus and methods for electroplating are described. Apparatus described herein include anode supports including positioning mechanisms that maintain a consistent distance between the surface of the wafer and the surface of a consumable anode during plating. Greater uniformity control is achieved. The consumable anode in one implementation has a plurality of through channels and at least one depression on its surface (e.g., a depression surrounding a channel) that is configured for registering with a protrusion on a component of an anode assembly, such as with a support plate. Fasteners may pass through the channels in the anode and attach it to a charge plate.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: July 16, 2019
    Assignee: Novellus Systems, Inc.
    Inventors: Jingbin Feng, R. Marshall Stowell, Shantinath Ghongadi, Zhian He, Frederick Dean Wilmot
  • Publication number: 20180030611
    Abstract: Apparatus and methods for electroplating metal onto substrates are disclosed. The electroplating apparatus comprise an electroplating cell and at least one oxidization device. The electroplating cell comprises a cathode chamber and an anode chamber separated by a porous barrier that allows metal cations to pass through but prevents organic particles from crossing. The oxidation device (ODD) is configured to oxidize cations of the metal to be electroplated onto the substrate, which cations are present in the anolyte during electroplating. In some embodiments, the ODD is implemented as a carbon anode that removes Cu(I) from the anolyte electrochemically. In other embodiments, the ODD is implemented as an oxygenation device (OGD) or an impressed current cathodic protection anode (ICCP anode), both of which increase oxygen concentration in anolyte solutions. Methods for efficient electroplating are also disclosed.
    Type: Application
    Filed: October 11, 2017
    Publication date: February 1, 2018
    Inventors: Tighe A. Spurlin, Charles Lorenzo Merrill, Ludan Huang, Matthew Sherman Thorum, Lee J. Brogan, James E. Duncan, Frederick Dean Wilmot, Robert Marshall Stowell, Steven T. Mayer, Haiying Fu, David W. Porter, Shantinath Ghongadi, Jonathan David Reid, Hyosang S. Lee, Mark J. Willey
  • Publication number: 20170137958
    Abstract: Methods described herein manage wafer entry into an electrolyte so that air entrapment due to initial impact of the wafer and/or wafer holder with the electrolyte is reduced and the wafer is moved in such a way that an electrolyte wetting wave front is maintained throughout immersion of the wafer also minimizing air entrapment.
    Type: Application
    Filed: January 26, 2017
    Publication date: May 18, 2017
    Inventors: Manish Ranjan, Shantinath Ghongadi, Frederick Dean Wilmot, Douglas Hill, Bryan L. Buckalew
  • Patent number: 9587322
    Abstract: Methods described herein manage wafer entry into an electrolyte so that air entrapment due to initial impact of the wafer and/or wafer holder with the electrolyte is reduced and the wafer is moved in such a way that an electrolyte wetting wave front is maintained throughout immersion of the wafer also minimizing air entrapment.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: March 7, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Manish Ranjan, Shantinath Ghongadi, Frederick Dean Wilmot, Douglas Hill, Bryan L. Buckalew
  • Publication number: 20160222541
    Abstract: Apparatus and methods for electroplating are described. Apparatus described herein include anode supports including positioning mechanisms that maintain a consistent distance between the surface of the wafer and the surface of a consumable anode during plating. Greater uniformity control is achieved.
    Type: Application
    Filed: April 7, 2016
    Publication date: August 4, 2016
    Inventors: Jingbin Feng, R. Marshall Stowell, Shantinath Ghongadi, Zhian He, Frederick Dean Wilmot
  • Patent number: 9340893
    Abstract: Apparatus and methods for electroplating are described. Apparatus described herein include anode supports including positioning mechanisms that maintain a consistent distance between the surface of the wafer and the surface of a consumable anode during plating. Greater uniformity control is achieved.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: May 17, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Jingbin Feng, R. Marshall Stowell, Shantinath Ghongadi, Zhian He, Frederick Dean Wilmot
  • Publication number: 20150218727
    Abstract: Methods described herein manage wafer entry into an electrolyte so that air entrapment due to initial impact of the wafer and/or wafer holder with the electrolyte is reduced and the wafer is moved in such a way that an electrolyte wetting wave front is maintained throughout immersion of the wafer also minimizing air entrapment.
    Type: Application
    Filed: April 14, 2015
    Publication date: August 6, 2015
    Inventors: Manish Ranjan, Shantinath Ghongadi, Frederick Dean Wilmot, Douglas Hill, Bryan L. Buckalew
  • Publication number: 20150211144
    Abstract: Apparatus and methods for electroplating are described. Apparatus described herein include anode supports including positioning mechanisms that maintain a consistent distance between the surface of the wafer and the surface of a consumable anode during plating. Greater uniformity control is achieved.
    Type: Application
    Filed: April 3, 2015
    Publication date: July 30, 2015
    Inventors: Jingbin Feng, R. Marshall Stowell, Shantinath Ghongadi, Zhian He, Frederick Dean Wilmot
  • Patent number: 9028666
    Abstract: Methods described herein manage wafer entry into an electrolyte so that air entrapment due to initial impact of the wafer and/or wafer holder with the electrolyte is reduced and the wafer is moved in such a way that an electrolyte wetting wave front is maintained throughout immersion of the wafer also minimizing air entrapment.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: May 12, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Manish Ranjan, Shantinath Ghongadi, Frederick Dean Wilmot, Douglas Hill, Bryan L. Buckalew
  • Patent number: 9028657
    Abstract: Apparatus and methods for electroplating are described. Apparatus described herein include anode supports including positioning mechanisms that maintain a consistent distance between the surface of the wafer and the surface of a consumable anode during plating. Greater uniformity control is achieved.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: May 12, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Jingbin Feng, R. Marshall Stowell, Shantinath Ghongadi, Zhian He, Frederick Dean Wilmot
  • Publication number: 20120292192
    Abstract: Methods described herein manage wafer entry into an electrolyte so that air entrapment due to initial impact of the wafer and/or wafer holder with the electrolyte is reduced and the wafer is moved in such a way that an electrolyte wetting wave front is maintained throughout immersion of the wafer also minimizing air entrapment.
    Type: Application
    Filed: April 30, 2012
    Publication date: November 22, 2012
    Inventors: Manish RANJAN, Shantinath GHONGADI, Frederick Dean WILMOT, Douglas HILL, Bryan L. BUCKALEW
  • Publication number: 20120061246
    Abstract: Apparatus and methods for electroplating are described. Apparatus described herein include anode supports including positioning mechanisms that maintain a consistent distance between the surface of the wafer and the surface of a consumable anode during plating. Greater uniformity control is achieved.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Inventors: Jingbin Feng, R. Marshall Stowell, Shantinath Ghongadi, Zhian He, Frederick Dean Wilmot
  • Patent number: 7727863
    Abstract: Sonic radiation is applied to a wafer portion of the planar surface of a rotating, tilted wafer as it is being immersed into a liquid treatment bath. The portion includes the leading outer edge region of the wafer. The area of the wafer portion is significantly less than the total surface area of the planar wafer surface. Power density is minimized. As a result, bubbles are removed from the wafer surface and cavitation in the liquid bath is avoided. In some embodiments, the liquid bath is de-gassed to inhibit bubble formation.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: June 1, 2010
    Assignee: Novellus Systems, Inc.
    Inventors: Bryan L. Buckalew, Jonathan D. Reid, Johanes H. Sukamto, Frederick Dean Wilmot, Richard S. Hill