Patents by Inventor Frederick N. Hause

Frederick N. Hause has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020056887
    Abstract: A transistor device is disclosed, having an insulating material disposed between the gate electrode and the drain and source lines, wherein the dielectric constant of the insulating material is 3.5 or less. Accordingly, the capacitance between the gate electrode and the drain and source lines can be reduced, thereby improving signal performance of the field effect transistor with decreased cross talk noise.
    Type: Application
    Filed: March 20, 2001
    Publication date: May 16, 2002
    Inventors: Manfred Horstmann, Karsten Wieczorek, Frederick N. Hause
  • Patent number: 6380055
    Abstract: A diffusion-retarding barrier region is incorporated into the gate electrode to reduce the downward diffusion of dopant toward the gate dielectric. The barrier region is a nitrogen-containing diffusion retarding barrier region formed between two separately formed layers of polysilicon. The upper layer of polysilicon is doped more heavily than the lower layer of polysilicon, and the barrier region serves to keep most of the dopant within the upper layer of polysilicon, and yet may allow some of the dopant to diffuse into the lower layer of polysilicon. The barrier region may be formed, for example, by annealing the first polysilicon layer in an nitrogen-containing ambient to form a nitrided layer at the top surface of the first polysilicon layer. The barrier region may alternatively be formed by depositing a nitrogen-containing layer, such as a silicon nitride or titanium nitride layer, on the top surface of the first polysilicon layer.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: April 30, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark I. Gardner, Robert Dawson, H. Jim Fulford, Jr., Frederick N. Hause, Mark W. Michael, Bradley T. Moore, Derick J. Wristers
  • Patent number: 6376350
    Abstract: The present invention is directed to a method of forming a semiconductor device. In one illustrative embodiment, the method comprises forming a layer of polysilicon and forming a recess in the layer of polysilicon. The method further comprises forming a metal region in the recess and patterning the layer of polysilicon to define a gate stack comprised of the metal region and the layer of polysilicon.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: April 23, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Michael P. Duane, Jeffrey C. Haines, Frederick N. Hause
  • Patent number: 6372588
    Abstract: A method of making an IGFET using solid phase diffusion is disclosed. The method includes providing a device region in a semiconductor substrate, forming a gate insulator on the device region, forming a gate on the gate insulator, forming an insulating layer over the gate and the device region, forming a heavily doped diffusion source layer over the insulating layer, and driving a dopant from the diffusion source layer through the insulating layer into the gate and the device region by solid phase diffusion, thereby heavily doping the gate and forming a heavily doped source and drain in the device region. Preferably, the gate and diffusion source layer are polysilicon, the gate insulator and insulating layer are silicon dioxide, the dopant is boron or boron species, and the dopant provides essentially all P-type doping for the gate, source and drain, thereby providing shallow channel junctions and reducing or eliminating boron penetration from the gate into the substrate.
    Type: Grant
    Filed: April 21, 1997
    Date of Patent: April 16, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Derick J. Wristers, Robert Dawson, H. Jim Fulford, Jr., Mark I. Gardner, Frederick N. Hause, Mark W. Michael, Bradley T. Moore
  • Patent number: 6358826
    Abstract: A method is provided for fabricating a semiconductor device on a structure, the method including forming a dielectric layer adjacent a gate conductor of the semiconductor device and above an LDD region of the structure and forming a first dielectric spacer adjacent a first portion of the dielectric layer adjacent the gate conductor and above a second portion of the dielectric layer above the LDD region. The method also includes introducing a dopant into a source/drain region of the structure and removing a third portion of the dielectric layer above the gate conductor, the second portion of the dielectric layer above the LDD region, and the first dielectric spacer. In addition, the method includes forming a first conductive layer above the gate conductor, adjacent the first portion of the dielectric layer and above the LDD region, and saliciding the first conductive layer above the gate conductor and above the LDD region to form a salicided first conductive layer.
    Type: Grant
    Filed: April 19, 2001
    Date of Patent: March 19, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Frederick N. Hause, Manfred Horstmann, Karsten Wieczorek
  • Patent number: 6352885
    Abstract: A transistor having a gate insulation layer whose peripheral portion has an increased thickness and a method of fabricating these transistor devices is disclosed. The peripheral portions with increased thickness of the gate insulation layer significantly reduce the injection of charge carriers into the gate insulation layer. Accordingly, the transistors described in the present application exhibit an improved long-time reliability. In addition, the lateral penetration of ions beneath the gate insulation layer for forming the lightly-doped drain and/or the lightly doped source is increased since the implantation may be performed at a tilt angle with respect to the perpendicular direction which is the conventionally used direction of the implantation step.
    Type: Grant
    Filed: May 25, 2000
    Date of Patent: March 5, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Frederick N. Hause, Manfred Horstmann
  • Patent number: 6346463
    Abstract: A method for forming a semiconductor device is provided. A base layer is provided. A first epitaxial layer having a first dopant at a first concentration is formed above the base layer. A second epitaxial layer having a second dopant at a second concentration is formed above the first epitaxial layer. The second concentration is greater than the first concentration. A third epitaxial layer having a third dopant at a third concentration is formed above the second epitaxial layer. The third concentration is less than the second concentration. Ions are implanted in the third epitaxial layer to form an implant region. The implant region is in contact with the second epitaxial layer. A semiconductor device comprises a base layer, first, second, and third epitaxial layers, and an implant region. The first epitaxial layer has a first dopant at a first concentration disposed above the base layer. The second epitaxial layer has a second dopant at a second concentration disposed above the first epitaxial layer.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: February 12, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Akif Sultan, Frederick N. Hause
  • Publication number: 20020004294
    Abstract: A diffusion-retarding barrier region is incorporated into the gate electrode to reduce the downward diffusion of dopant toward the gate dielectric. The barrier region is a nitrogen-containing diffusion retarding barrier region formed between two separately formed layers of polysilicon. The upper layer of polysilicon is doped more heavily than the lower layer of polysilicon, and the barrier region serves to keep most of the dopant within the upper layer of polysilicon, and yet may allow some of the dopant to diffuse into the lower layer of polysilicon. The barrier region may be formed, for example, by annealing the first polysilicon layer in an nitrogen-containing ambient to form a nitrided layer at the top surface of the first polysilicon layer. The barrier region may alternatively be formed by depositing a nitrogen-containing layer, such as a silicon nitride or titanium nitride layer, on the top surface of the first polysilicon layer.
    Type: Application
    Filed: October 22, 1998
    Publication date: January 10, 2002
    Inventors: MARK I. GARDNER, ROBERT DAWSON, H. JIM FULFORD, JR., FREDERICK N. HAUSE, MARK W. MICHAEL, BRADLEY T. MOORE, DERICK J. WRISTERS
  • Publication number: 20020003273
    Abstract: An IGFET with a silicide contact on an ultra-thin gate is disclosed. A method of forming the IGFET includes forming a gate over a semiconductor substrate, forming a source and a drain in the substrate, depositing a contact material over the gate, and reacting the contact material with the gate to form a silicide contact on the gate and consume at least one-half of the gate. By consuming such a large amount of the gate, a relatively thin gate can be converted into an ultra-thin gate with a thickness on the order of 100 to 200 angstroms. Preferably, the bottom surface of the gate is essentially undoped before reacting the contact material with the gate, and reacting the contact material with the gate pushes a peak concentration of a dopant in the gate towards the substrate so that a heavy concentration of the dopant is pushed to the bottom surface of the gate without being pushed into the substrate.
    Type: Application
    Filed: September 8, 1998
    Publication date: January 10, 2002
    Inventors: ROBERT DAWSON, H. JIM FULFORD, MARK I. GARDNER, FREDERICK N. HAUSE, MARK W. MICHAEL, BRADLEY T. MOORE, DERICK J. WRISTERS
  • Patent number: 6337217
    Abstract: The present invention provides for a method and an apparatus for performing automatic control adjustments during photolithography processes. A plurality of semiconductor devices are processed. Optical data analysis is performed upon at least one of the processed semiconductor device. Control adjustments to the processing is performed in response to the optical data analysis.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: January 8, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Frederick N. Hause, Karen L. E. Turnquest
  • Publication number: 20010039094
    Abstract: A method of making an IGFET using solid phase diffusion is disclosed. The method includes providing a device region in a semiconductor substrate, forming a gate insulator on the device region, forming a gate on the gate insulator, forming an insulating layer over the gate and the device region, forming a heavily doped diffusion source layer over the insulating layer, and driving a dopant from the diffusion source layer through the insulating layer into the gate and the device region by solid phase diffusion, thereby heavily doping the gate and forming a heavily doped source and drain in the device region. Preferably, the gate and diffusion source layer are polysilicon, the gate insulator and insulating layer are silicon dioxide, the dopant is boron or boron species, and the dopant provides essentially all P-type doping for the gate, source and drain, thereby providing shallow channel junctions and reducing or eliminating boron penetration from the gate into the substrate.
    Type: Application
    Filed: April 21, 1997
    Publication date: November 8, 2001
    Inventors: DERICK J. WRISTERS, ROBERT DAWSON, H. JIM FULFORD, JR., MARK I. GARDNER, FREDERICK N. HAUSE, MARK W. MICHAEL, BRADLEY T. MOORE
  • Patent number: 6274894
    Abstract: A transistor having source and drain regions which include lower-bandgap portions and a method for making the same are provided. A gate conductor is formed over a gate dielectric on a semiconductor substrate. The gate conductor is covered on all sides with oxide or another dielectric for protection during subsequent processing. Anisotropic etching is used to form shallow trenches in the substrate on either side of the gate conductor. The trenches are bounded by the dielectric-coated gate conductor and by dielectric isolation regions, or by an adjacent gate conductor in the case of non-isolated transistors. A selective epitaxy technique may then be used to grow a layer within each trench of a material having a bandgap lower than that of the semiconductor substrate. The lower-bandgap material is preferably grown only on the exposed semiconductor surfaces in the trenches, and not on the surrounding dielectric regions.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: August 14, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Manfred Horstmann, Frederick N. Hause
  • Patent number: 6268637
    Abstract: An isolation structure and a method of making the same are provided. In one aspect, the method includes the steps of forming a trench in a substrate and forming a first insulating sidewall in the trench and a second insulating in the trench in spaced-apart relation to the first insulating sidewall. A bridge layer is formed between the first and the second sidewalls. The bridge layer, the first and second sidewalls, and the substrate define an air gap in the trench. The isolation structure exhibits a low capacitance in a narrow structure. Scaling is enhanced and the potential for parasitic leakage current due to non-planarity is reduced.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: July 31, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark I. Gardner, Frederick N. Hause, Charles E. May
  • Patent number: 6261908
    Abstract: A method of fabricating a buried local interconnect in a substrate and an integrated circuit incorporating the same are provided. The method includes the steps forming a trench in the substrate and forming a first insulating layer in the trench. A conductor layer is formed on the first insulating layer. A portion of the conductor layer is removed to define a local interconnect layer and a second insulating layer is formed in the trench covering the local interconnect layer. The method provides for a local interconnect layer buried beneath a dielectric layer of an integrated circuit, such as a shallow trench isolation layer. Areas of a substrate above the silicon-silicon dioxide interface formerly reserved for local interconnect layers in conventional processing may now be used for additional conductor lines.
    Type: Grant
    Filed: July 27, 1998
    Date of Patent: July 17, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Frederick N. Hause, Mark I. Gardner, Charles E. May
  • Patent number: 6259142
    Abstract: A semiconductor integrated circuit having a multiple split gate is forming using a first polysilicon layer and a second polysilicon layer to form alternating first and second gate electrodes within an active area. The alternating gate electrodes are electrically isolated from one another by means of a gate insulating layer that is formed adjacent the side-walls of each firs gate electrode. Source and drain regions are formed adjacent the ends of the multiple split gate to define a channel region.
    Type: Grant
    Filed: April 7, 1998
    Date of Patent: July 10, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robert Dawson, Mark I. Gardner, Frederick N. Hause, H. Jim Fulford, Jr., Mark W. Michael, Bradley T. Moore, Derick J. Wristers
  • Patent number: 6255703
    Abstract: A method is provided for fabricating a semiconductor device on a structure, the method including forming a dielectric layer adjacent a gate conductor of the semiconductor device and above an LDD region of the structure and forming a first dielectric spacer adjacent a first portion of the dielectric layer adjacent the gate conductor and above a second portion of the dielectric layer above the LDD region. The method also includes introducing a dopant into a source/drain region of the structure and removing a third portion of the dielectric layer above the gate conductor, the second portion of the dielectric layer above the LDD region, and the first dielectric spacer. In addition, the method includes forming a first conductive layer above the gate conductor, adjacent the first portion of the dielectric layer and above the LDD region, and saliciding the first conductive layer above the gate conductor and above the LDD region to form a salicided first conductive layer.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: July 3, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Frederick N. Hause, Manfred Horstmann, Karsten Wieczorek
  • Patent number: 6255182
    Abstract: A method is described which can be used to form gate structures of very small dimensions in a semiconductor device. The method may be used to avoid employment of highly-sophisticated and cost-intensive DUV photolithography. In one illustrative embodiment, the method comprises forming a gate electrode layer, forming a first mask layer above the gate electrode layer, and forming a sidewall spacer adjacent the sidewalls of the first mask layer. Thereafter, the method comprises forming a second mask layer above a portion of the sidewall spacer and the first mask layer, removing portions of the sidewall spacer to define a hard mask comprised of a portion of the sidewall spacer, and patterning the gate electrode layer using the hard mask to define a gate electrode of the device.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: July 3, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Manfred Horstmann, Frederick N. Hause
  • Patent number: 6252283
    Abstract: An integrated circuit and a method of making a transistor thereof are provided. In one aspect, the method includes the steps of forming a gate dielectric layer on the substrate and forming a gate electrode on the gate dielectric layer with a lower surface, a midpoint, and a quantity of p-type impurity. A quantity of nitrogen is introduced into the gate electrode whereby the quantity nitrogen has a peak concentration proximate the lower surface. A quantity of germanium is introduced into the gate electrode and first and second source/drain regions are formed in the substrate. The method enables simultaneous formation of n-channel and p-channel gate electrodes with work functions tailored for both types of devices.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: June 26, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark I. Gardner, Dim-Lee Kwong, Frederick N. Hause
  • Patent number: 6242776
    Abstract: A method is provided for fabricating a semiconductor device on a structure, the method including forming a dielectric layer adjacent a gate conductor of the semiconductor device and above an LDD region of the structure and removing a first portion of the dielectric layer above the gate conductor and above the LDD region. The method also includes forming a first conductive layer above the gate conductor, adjacent the dielectric layer and above the LDD region and saliciding the first conductive layer above the gate conductor and above the LDD region to form a salicided first conductive layer.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: June 5, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Frederick N. Hause, Manfred Horstmann, Karsten Wieczorek
  • Patent number: 6226781
    Abstract: A computer-implemented method is provided in which a design layer of an integrated circuit is altered by spatial definition using underlying and overlying design layers. That is, the specific layers of an integrated circuit that impact the layer being modified are taken into account. According to an embodiment, the computer-implemented method is performed using, e.g., a CAD program. First, an original layout design comprising a plurality of design layers representing respective levels of an integrated circuit is generated. The targeted properties, e.g., electrical properties, of features in one design layer are determined based upon the arrangement of features in other design layers relative to the features in that one design layer. The features in the design layer being modified are then separated into different working layers such that each working layer includes features having at least one common targeted property.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: May 1, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: John L. Nistler, Frederick N. Hause, Phillip J. Etter