Patents by Inventor Frederick P. Layman

Frederick P. Layman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9719727
    Abstract: A method of and system for recirculating a fluid in a particle production system. A reactor produces a reactive particle-gas mixture. A quench chamber mixes a conditioning fluid with the reactive particle-gas mixture, producing a cooled particle-gas mixture that comprises a plurality of precursor material particles and an output fluid. A filter element filters the output fluid, producing a filtered output. A temperature control module controls the temperature of the filtered output, producing a temperature-controlled, filtered output. A content ratio control module modulates the content of the temperature-controlled, filtered output, thereby producing a content-controlled, temperature-controlled, filtered output. A channeling element supplies the content-controlled, temperature-controlled, filtered output to the quench chamber, wherein the content-controlled, filtered output is provided to the quench chamber as the conditioning fluid to be used in cooling the reactive particle-gas mixture.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: August 1, 2017
    Assignee: SDCmaterials, Inc.
    Inventor: Frederick P. Layman
  • Patent number: 9599405
    Abstract: An apparatus for cooling a reactive mixture, comprising: a reactor configured to form the reactive mixture; a quench chamber comprising a frusto-conical body having a wide end, a narrow end, and a quench region formed between the wide and narrow end, wherein the quench chamber is configured to receive the reactive mixture from the plasma reactor through a reactive mixture inlet into the quench region, to receive a conditioning fluid through at least one fluid inlet, and to flow the conditioning fluid into the quench region, wherein the frusto-conical body is configured to produce a turbulent flow within the quench region with the flow of the conditioning fluid into the quench region, thereby promoting the quenching of the reactive mixture to form a cooled gas-particle mixture; and a suction generator configured to force the cooled gas-particle mixture out of the quench chamber.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: March 21, 2017
    Assignee: SDCmaterials, Inc.
    Inventors: Maximilian A. Biberger, Frederick P. Layman
  • Publication number: 20160138870
    Abstract: An apparatus for cooling a reactive mixture, comprising: a reactor configured to form the reactive mixture; a quench chamber comprising a frusto-conical body having a wide end, a narrow end, and a quench region formed between the wide and narrow end, wherein the quench chamber is configured to receive the reactive mixture from the plasma reactor through a reactive mixture inlet into the quench region, to receive a conditioning fluid through at least one fluid inlet, and to flow the conditioning fluid into the quench region, wherein the frusto-conical body is configured to produce a turbulent flow within the quench region with the flow of the conditioning fluid into the quench region, thereby promoting the quenching of the reactive mixture to form a cooled gas-particle mixture; and a suction generator configured to force the cooled gas-particle mixture out of the quench chamber.
    Type: Application
    Filed: October 12, 2015
    Publication date: May 19, 2016
    Inventors: Maximilian A. BIBERGER, Frederick P. LAYMAN
  • Publication number: 20160030910
    Abstract: The present disclosure relates to a nanoparticle production system and methods of using the system. The nanoparticle production system includes a plasma gun including a male electrode, a female electrodes and a working gas supply configured to deliver a working gas in a vortexing helical flow direction across a plasma generation region. The system also includes a continuous feed system, a quench chamber, a cooling conduit that includes a laminar flow disruptor, a system overpressure module, and a conditioning fluid purification and recirculation system.
    Type: Application
    Filed: March 12, 2014
    Publication date: February 4, 2016
    Inventors: Maximillian A. BIBERGER, David LEAMON, Frederick p. LAYMAN, Paul LEFEVRE
  • Patent number: 9216398
    Abstract: A system comprising: a plasma production chamber configured to produce a plasma; a reaction chamber vaporize a precursor material with the plasma to form a reactive mixture; a quench chamber having a frusto-conical surface and a quench region formed within the quench chamber between an ejection port of the reaction chamber and a cooled mixture outlet, wherein the quench region configured to receive the reactive mixture from the ejection port, to cool the reactive mixture to form a cooled mixture, and to supply the cooled mixture to the cooled mixture outlet; and a conditioning fluid injection ring disposed at the ejection port and configured to flow a conditioning fluid directly into the reactive mixture as the reactive mixture flows through the ejection port, thereby disturbing the flow of the reactive mixture, creating turbulence within the quench region and cooling the reactive mixture to form a cooled mixture comprising condensed nanoparticles.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: December 22, 2015
    Assignee: SDCmaterials, Inc.
    Inventors: Maximilian A. Biberger, Frederick P. Layman
  • Patent number: 9180423
    Abstract: An apparatus for cooling a reactive mixture, comprising: a reactor configured to form the reactive mixture; a quench chamber comprising a frusto-conical body having a wide end, a narrow end, and a quench region formed between the wide and narrow end, wherein the quench chamber is configured to receive the reactive mixture from the plasma reactor through a reactive mixture inlet into the quench region, to receive a conditioning fluid through at least one fluid inlet, and to flow the conditioning fluid into the quench region, wherein the frusto-conical body is configured to produce a turbulent flow within the quench region with the flow of the conditioning fluid into the quench region, thereby promoting the quenching of the reactive mixture to form a cooled gas-particle mixture; and a suction generator configured to force the cooled gas-particle mixture out of the quench chamber.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: November 10, 2015
    Assignee: SDCmaterials, Inc.
    Inventors: Maximilian A. Biberger, Frederick P. Layman
  • Publication number: 20150196884
    Abstract: A method of and system for recirculating a fluid in a particle production system. A reactor produces a reactive particle-gas mixture. A quench chamber mixes a conditioning fluid with the reactive particle-gas mixture, producing a cooled particle-gas mixture that comprises a plurality of precursor material particles and an output fluid. A filter element filters the output fluid, producing a filtered output. A temperature control module controls the temperature of the filtered output, producing a temperature-controlled, filtered output. A content ratio control module modulates the content of the temperature-controlled, filtered output, thereby producing a content-controlled, temperature-controlled, filtered output. A channeling element supplies the content-controlled, temperature-controlled, filtered output to the quench chamber, wherein the content-controlled, filtered output is provided to the quench chamber as the conditioning fluid to be used in cooling the reactive particle-gas mixture.
    Type: Application
    Filed: November 14, 2014
    Publication date: July 16, 2015
    Inventor: Frederick P. LAYMAN
  • Patent number: 8906316
    Abstract: A method of and system for recirculating a fluid in a particle production system. A reactor produces a reactive particle-gas mixture. A quench chamber mixes a conditioning fluid with the reactive particle-gas mixture, producing a cooled particle-gas mixture that comprises a plurality of precursor material particles and an output fluid. A filter element filters the output fluid, producing a filtered output. A temperature control module controls the temperature of the filtered output, producing a temperature-controlled, filtered output. A content ratio control module modulates the content of the temperature-controlled, filtered output, thereby producing a content-controlled, temperature-controlled, filtered output. A channeling element supplies the content-controlled, temperature-controlled, filtered output to the quench chamber, wherein the content-controlled, filtered output is provided to the quench chamber as the conditioning fluid to be used in cooling the reactive particle-gas mixture.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: December 9, 2014
    Assignee: SDCmaterials, Inc.
    Inventor: Frederick P. Layman
  • Patent number: 8893651
    Abstract: A plasma-arc vaporization chamber includes features configured to permit very high-energy plasmas, preferably with high hydrogen content. The vaporization chamber includes a female electrode having an internal chamber with a target region made of a conductive material highly resistant to thermal degradation and an isthmus region of sufficient width to slow plasma flow therethrough enough to permit vaporization within the internal chamber of a material delivered into the plasma. The material is preferably injected at an angle counter to the flow of the plasma. The vaporization chamber also includes a flange-cooling chamber adjacent to a flange of the female electrode. Additionally, the chamber preferably includes vortexing gas injectors configured to provide a helical gas flow within at least a portion of the internal chamber.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: November 25, 2014
    Assignee: SDCmaterials, Inc.
    Inventors: Maximilian A. Biberger, Frederick P. Layman
  • Publication number: 20140318318
    Abstract: A plasma gun system comprising: a plasma gun comprising an outlet, wherein the plasma gun is configured to generate a plasma stream and provide the plasma stream to the outlet; and a plasma gun extension assembly configured to be coupled to the plasma gun, wherein the plasma gun extension assembly comprises an extension chamber and a port, the extension chamber having an interior diameter defined by a chamber wall and being configured to receive the plasma stream from the outlet of the plasma gun and to enable the plasma stream to expand upon entering the extension chamber, and the port being configured to introduce a powder to the expanded plasma stream at a location outside of the plasma gun.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 30, 2014
    Inventors: FREDERICK P. LAYMAN, David Leamon
  • Publication number: 20140263190
    Abstract: The present disclosure relates to a nanoparticle production system and methods of using the system. The nanoparticle production system includes a plasma gun including a male electrode, a female electrodes and a working gas supply configured to deliver a working gas in a vortexing helical flow direction across a plasma generation region. The system also includes a continuous feed systems, a quench chamber, a cooling conduit that includes a laminar flow disruptor, a system overpressure module, and a conditioning fluid purification and recirculation system.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Inventors: Maximilian A. Biberger, David Leamon, Frederick P. Layman, Paul Lefevre
  • Patent number: 8828328
    Abstract: Apparatuses for and methods of nano-material powder preservation and dispersion in liquid, capture, and treatments are disclosed. The applications of the present disclosure ensure powder accountability of the nano-materials preventing the nano material from dispersing into the air. The method of treating a nano-material comprises receiving a nano-material and mixing/dispersing the nano-material with a fluid in a vessel until the nano-material is sealed by the fluid. The apparatus for treating a nano-material comprises a hermetically sealable vessel containing a nano-material and a fluid, wherein the fluid is configured to increase the isolation between particles of the nano-material.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: September 9, 2014
    Assignee: SDCmaterails, Inc.
    Inventors: David Leamon, Frederick P. Layman, Eliseo Ruiz, Maximilian A. Biberger
  • Patent number: 8803025
    Abstract: A plasma gun system comprising: a plasma gun comprising an outlet, wherein the plasma gun is configured to generate a plasma stream and provide the plasma stream to the outlet; and a plasma gun extension assembly configured to be coupled to the plasma gun, wherein the plasma gun extension assembly comprises an extension chamber and a port, the extension chamber having an interior diameter defined by a chamber wall and being configured to receive the plasma stream from the outlet of the plasma gun and to enable the plasma stream to expand upon entering the extension chamber, and the port being configured to introduce a powder to the expanded plasma stream at a location outside of the plasma gun.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: August 12, 2014
    Assignee: SDCmaterials, Inc.
    Inventors: Frederick P. Layman, David Leamon
  • Publication number: 20140209451
    Abstract: A system comprising: a plasma production chamber configured to produce a plasma; a reaction chamber vaporize a precursor material with the plasma to form a reactive mixture; a quench chamber having a frusto-conical surface and a quench region formed within the quench chamber between an ejection port of the reaction chamber and a cooled mixture outlet, wherein the quench region configured to receive the reactive mixture from the ejection port, to cool the reactive mixture to form a cooled mixture, and to supply the cooled mixture to the cooled mixture outlet; and a conditioning fluid injection ring disposed at the ejection port and configured to flow a conditioning fluid directly into the reactive mixture as the reactive mixture flows through the ejection port, thereby disturbing the flow of the reactive mixture, creating turbulence within the quench region and cooling the reactive mixture to form a cooled mixture comprising condensed nanoparticles.
    Type: Application
    Filed: January 27, 2014
    Publication date: July 31, 2014
    Inventors: Maximilian A. BIBERGER, Frederick P. LAYMAN
  • Publication number: 20140151939
    Abstract: A method of and system for recirculating a fluid in a particle production system. A reactor produces a reactive particle-gas mixture. A quench chamber mixes a conditioning fluid with the reactive particle-gas mixture, producing a cooled particle-gas mixture that comprises a plurality of precursor material particles and an output fluid. A filter element filters the output fluid, producing a filtered output. A temperature control module controls the temperature of the filtered output, producing a temperature-controlled, filtered output. A content ratio control module modulates the content of the temperature-controlled, filtered output, thereby producing a content-controlled, temperature-controlled, filtered output. A channeling element supplies the content-controlled, temperature-controlled, filtered output to the quench chamber, wherein the content-controlled, filtered output is provided to the quench chamber as the conditioning fluid to be used in cooling the reactive particle-gas mixture.
    Type: Application
    Filed: May 31, 2013
    Publication date: June 5, 2014
    Inventor: Frederick P. LAYMAN
  • Patent number: 8663571
    Abstract: A system comprising: a plasma production chamber configured to produce a plasma; a reaction chamber vaporize a precursor material with the plasma to form a reactive mixture; a quench chamber having a frusto-conical surface and a quench region formed within the quench chamber between an ejection port of the reaction chamber and a cooled mixture outlet, wherein the quench region configured to receive the reactive mixture from the ejection port, to cool the reactive mixture to form a cooled mixture, and to supply the cooled mixture to the cooled mixture outlet; and a conditioning fluid injection ring disposed at the ejection port and configured to flow a conditioning fluid directly into the reactive mixture as the reactive mixture flows through the ejection port, thereby disturbing the flow of the reactive mixture, creating turbulence within the quench region and cooling the reactive mixture to form a cooled mixture comprising condensed nanoparticles.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: March 4, 2014
    Assignee: SDCmaterials, Inc.
    Inventors: Maximilian A. Biberger, Frederick P. Layman
  • Publication number: 20120285548
    Abstract: A conduit system comprising: a conduit formed by a surface extending from a first end to a second end, wherein the conduit is configured to channel a mixture stream from the first end to the second end; and a plurality of fluid delivery features disposed along the conduit between the first end and the second end, wherein each fluid delivery feature is configured to deliver a conditioning fluid into the conduit in an annular formation in a direction angled towards the second end in the same direction as the flow of the mixture stream, thereby providing a sheath of conditioning fluid between the conduit surface and the mixture stream.
    Type: Application
    Filed: November 8, 2011
    Publication date: November 15, 2012
    Applicant: SDCmaterials, Inc.
    Inventors: Frederick P. Layman, Maximilian A. Biberger
  • Patent number: 8142619
    Abstract: A constricting chamber having first and second ends, the chamber comprising: an interior surface formed between the first and second ends, disposed circumferentially around and defining an interior space and a longitudinal axis of the chamber; a frusto-conical surface disposed between the first and second ends and narrowing as it extends away from the first end and into the second end; an ejection port disposed at the second end and substantially aligned with the longitudinal axis; a cover disposed at the first end, substantially perpendicular to the longitudinal axis, and comprising a center substantially aligned with the longitudinal axis; an injection port disposed on the cover proximate the center, and configured to receive a reactive mixture into the chamber; and an annular supply portion disposed circumferentially around the longitudinal axis and comprising supply port(s) configured to supply conditioning fluid into the chamber in an annular formation along the interior surface.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: March 27, 2012
    Assignee: SDC Materials Inc.
    Inventors: Frederick P. Layman, Maximilian A. Biberger
  • Patent number: 8051724
    Abstract: A conduit system comprising: a conduit formed by a surface extending from a first end to a second end, wherein the conduit is configured to channel a mixture stream from the first end to the second end; and a plurality of fluid delivery features disposed along the conduit between the first end and the second end, wherein each fluid delivery feature is configured to deliver a conditioning fluid into the conduit in an annular formation in a direction angled towards the second end in the same direction as the flow of the mixture stream, thereby providing a sheath of conditioning fluid between the conduit surface and the mixture stream.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: November 8, 2011
    Assignee: SDCmaterials, Inc.
    Inventors: Frederick P. Layman, Maximilian A. Biberger
  • Publication number: 20110143041
    Abstract: A plasma gun system comprising: a plasma gun comprising an outlet, wherein the plasma gun is configured to generate a plasma stream and provide the plasma stream to the outlet; and a plasma gun extension assembly configured to be coupled to the plasma gun, wherein the plasma gun extension assembly comprises an extension chamber and a port, the extension chamber having an interior diameter defined by a chamber wall and being configured to receive the plasma stream from the outlet of the plasma gun and to enable the plasma stream to expand upon entering the extension chamber, and the port being configured to introduce a powder to the expanded plasma stream at a location outside of the plasma gun.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 16, 2011
    Applicant: SDCmaterials, Inc.
    Inventors: Frederick P. Layman, David Leamon