Patents by Inventor Frederick Rush

Frederick Rush has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10747709
    Abstract: A multi-processor system with processing elements, interspersed memory, and primary and secondary interconnection networks optimized for high performance and low power dissipation is disclosed. In the secondary network multiple message routing nodes are arranged in an interspersed fashion with multiple processors. A given message routing node may receive messages from other message nodes, and relay the received messages to destination message routing nodes using relative offsets included in the messages. The relative offset may specify a number of message nodes from the message node that originated a message to a destination message node.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: August 18, 2020
    Assignee: COHERENT LOGIX, INCORPORATED
    Inventors: Carl S. Dobbs, Keith M. Bindloss, Kenneth R. Faulkner, Alex E. Icaza, Frederick A. Rush, Faisal A. Syed, Michael R. Trocino
  • Patent number: 10670695
    Abstract: A radar sensing system for a vehicle has multiple transmitters and receivers on a vehicle. The transmitters are configured to transmit radio signals which are reflected off of objects in the environment. There are one or more receivers that receive the reflected radio signals. Each receiver has an antenna, a radio frequency front end, an analog-to-digital converter (ADC), and a digital signal processor. The transmitted signals are based on spreading codes generated by a programmable code generation unit. The receiver also makes use of the spreading codes generated by the programmable code generation unit. The programmable code generation unit is configured to selectively generate particular spreading codes that have desired properties.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: June 2, 2020
    Assignee: Uhnder, Inc.
    Inventors: Monier Maher, Jean Pierre Bordes, Wayne E. Stark, Raghunath Krishna Rao, Frederick Rush, Curtis Davis, Srikanth Gollapudi, Steve Borho, Murtaza Ali
  • Publication number: 20190187246
    Abstract: A radar system operated in a variable power mode includes transmitters, receivers, and a controller. The transmitters transmit digitally modulated signals. The receivers receive radio signals that include transmitted radio signals from the transmitter and reflected from objects in the environment. In addition, an interfering radar signal from a different radar system is received that has been linearly frequency modulated. Each receiver includes a linear frequency modulation canceler that includes a FIR filter, and is configured as a 1-step linear predictor with least mean squares adaptation to attempt to cancel the interfering signal. The prediction is subtracted from the FIR input signal that drives the adaptation and also comprises the canceler output. The controller is configured to control the adaptation on a first receiver. The controller delays the adaptation such that transients at the start of each receive pulse are avoided.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 20, 2019
    Inventors: Richard T. Behrens, Fred Harris, Frederick Rush, Monier Maher, Curtis Davis, Murtaza Ali
  • Publication number: 20190138492
    Abstract: A multi-processor system with processing elements, interspersed memory, and primary and secondary interconnection networks optimized for high performance and low power dissipation is disclosed. In the secondary network multiple message routing nodes are arranged in an interspersed fashion with multiple processors. A given message routing node may receive messages from other message nodes, and relay the received messages to destination message routing nodes using relative offsets included in the messages. The relative offset may specify a number of message nodes from the message node that originated a message to a destination message node.
    Type: Application
    Filed: November 2, 2018
    Publication date: May 9, 2019
    Inventors: Carl S. Dobbs, Keith M. Bindloss, Kenneth R. Faulkner, Alex E. Icaza, Frederick A. Rush, Faisal A. Syed, Michael R. Trocino
  • Publication number: 20180259620
    Abstract: A radar system includes transmitters and receivers configured for installation and use in a vehicle. The transmitters transmit radio signals. The receivers receive radio signals that include the transmitted radio signals reflected from objects in an environment. Each receiver has a controller, a buffer, and a post-buffer processor. The receiver processes the received radio signals and stored data samples in the buffer. The buffer operates in a plurality of modes defined by the controller. Two or more modes of operation of the plurality of modes are performed with a same set of data samples stored in the buffer. The post-buffer processor receives data samples from the buffer and performs at least one of correlation processing to determine object ranges, Doppler processing to determine object velocity, and, in combination with other receivers of the plurality of receivers, further processing to determine angular locations of the objects.
    Type: Application
    Filed: May 14, 2018
    Publication date: September 13, 2018
    Inventors: Monier Maher, Curtis Davis, Frederick Rush, Aria Eshraghi
  • Publication number: 20180231656
    Abstract: A radar sensing system for a vehicle has multiple transmitters and receivers on a vehicle. The transmitters are configured to transmit radio signals which are reflected off of objects in the environment. There are one or more receivers that receive the reflected radio signals. Each receiver has an antenna, a radio frequency front end, an analog-to-digital converter (ADC), and a digital signal processor. The transmitted signals are based on spreading codes generated by a programmable code generation unit. The receiver also makes use of the spreading codes generated by the programmable code generation unit. The programmable code generation unit is configured to selectively generate particular spreading codes that have desired properties.
    Type: Application
    Filed: February 9, 2018
    Publication date: August 16, 2018
    Inventors: Monier Maher, Jean Pierre Bordes, Wayne E. Stark, Raghunath Krishna Rao, Frederick Rush, Curtis Davis, Srikanth Gollapudi, Steve Borho, Murtaza Ali
  • Patent number: 9971020
    Abstract: A radar system includes transmitters and receivers configured for installation and use in a vehicle. The transmitters transmit radio signals. The receivers receive radio signals that include the transmitted radio signals reflected from objects in an environment. Each receiver has an RF front end, an analog-to-digital converter (ADC), a digital signal processor, and a controller. The digital signal processor processes the data from the ADC and stores data samples in a buffer. The buffer operates in several modes defined by the controller. These modes include replay mode, loopback mode, quiet mode, and throttle mode. By controlling the buffer, the same received samples can be processed in multiple ways to generate information on targets at different ranges and velocities. The buffer is read out and the data is processed further to enable the radar system to determine range, velocity, and angle of targets in the environment.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: May 15, 2018
    Assignee: Uhnder, Inc.
    Inventors: Monier Maher, Curtis Davis, Frederick Rush, Aria Eshraghi
  • Patent number: 8884791
    Abstract: Apparatus and methods for scanning a keypad of a communications device in a manner that tends to minimize interference with transceiver operation, such as a RF transceiver. In one embodiment, a controller receives a periodic signal of the communications device and provides a scan signal to cause the keypad to be scanned. In a sleep mode a keypad scan is performed only subsequent to a keypad activation. However, if the communications device is in use a keypad scan is performed once per frame at predetermined intervals, in one embodiment.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: November 11, 2014
    Assignee: ST-Ericsson SA
    Inventors: Frederick A. Rush, Lionel M. Cimaz, Wasim Quddus
  • Patent number: 8478921
    Abstract: A communication apparatus includes a radio frequency circuit that operates on a radio frequency signal and a digital processing circuit coupled to the radio frequency circuit. The digital processing circuit includes a plurality of bus masters coupled to a shared bus. A bus arbiter is provided for arbitrating between requests to access the bus by a first bus master and one or more other bus masters. Accesses by the one or more other bus masters to the bus are restricted in response to a signal indicative of a change in a mode of operation of the RF circuit. In one particular implementation, a communication apparatus employs time domain isolation wherein the digital processing circuit may be placed in a shutdown mode when the radio frequency circuit is active.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: July 2, 2013
    Assignee: Silicon Laboratories, Inc.
    Inventors: Phillip M. Matthews, Frederick A. Rush, G. Diwakar Vishakhadatta
  • Patent number: 8472990
    Abstract: A method of operating a radio-frequency (RF) circuitry and a signal-processing circuitry in a mobile telephone apparatus includes at least partially disabling the signal-processing circuitry while transmitting or receiving signals. In one example, a processor is efficiently disabled by generating and servicing an interrupt of relatively high priority. One advantage of this example is that preexisting, legacy code can be maintained, while still achieving the desired objectives. The processor can be enabled by generating and servicing a second high priority interrupt.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: June 25, 2013
    Assignee: St Ericsson SA
    Inventors: Frederick A. Rush, G. Diwakar Vishakhadatta, Phillip M. Matthews
  • Patent number: 8463256
    Abstract: A system includes a communication apparatus coupled to a test subsystem through a converter. The test subsystem may be configured to initiate an audio test of the communication apparatus and receive in response a set of audio test data at a predetermined constant data rate. The communication apparatus may be configured to enable output of audio test data during inactive periods of operation of an RF circuit of the communication apparatus and to disable output of audio test data during active periods of operation of the RF circuit. The converter may be configured to receive the set of audio test data from the communication apparatus and provide the set of audio test data to the test subsystem at the predetermined constant data rate during the active and the inactive periods of operation of the RF circuit.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: June 11, 2013
    Assignee: Silicon Laboratories, Inc.
    Inventor: Frederick A. Rush
  • Patent number: 8019382
    Abstract: A communication apparatus including a digital processing circuit coupled to a radio frequency (RF) circuit and to a serial communications device. The serial communications device may be configured to buffer data communicated between the digital processing circuit and an external device. A portion of the serial communications device may be disabled during an active mode of operation of the RF circuit. The serial communications device may include a flow control logic circuit configured to control a data stream between the digital processing circuit and the external device while a portion of the serial communications device is disabled. In some embodiments, a portion of the digital processing circuit may be disabled during an active mode of operation of the RF circuit.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: September 13, 2011
    Assignee: ST-Ericsson SA
    Inventors: Frederick A. Rush, Satish S. Kulkarni
  • Patent number: 7778674
    Abstract: A communication apparatus including a radio frequency (RF) circuit coupled to a digital processing circuit and an interface circuit coupled to an authentication device. The RF circuit may be configured to operate on a radio frequency signal. A portion of the digital processing circuit may be disabled during an active mode of operation of the RF circuit. The interface circuit may be configured to buffer data communicated between the digital processing circuit and an authentication device during the active mode of operation of the RF circuit. In one embodiment, the interface circuit includes a memory and memory control logic to buffer data available for transmission to and/or received from the authentication device. In some embodiments, the digital processing circuit includes a processing unit configured to process authentication data received from the authentication device. In these and other embodiments, the authentication device may be a subscriber identity module (SIM).
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: August 17, 2010
    Assignee: ST-Ericsson SA
    Inventors: Frederick A. Rush, Satish S. Kulkarni
  • Patent number: 7761056
    Abstract: A method of operating a radio-frequency (RF) circuitry and a signal-processing circuitry in a mobile telephone apparatus includes at least partially disabling the signal-processing circuitry while transmitting or receiving signals. In one example, a processor is efficiently disabled by generating and servicing an interrupt of relatively high priority. One advantage of this example is that preexisting, legacy code can be maintained, while still achieving the desired objectives. The processor can be enabled by generating and servicing a second high priority interrupt.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: July 20, 2010
    Assignee: ST-Ericsson SA
    Inventors: Frederick A. Rush, G. Diwakar Vishakhadatta, Phillip M. Matthews
  • Patent number: 7593482
    Abstract: A wireless communication system is provided that includes RF circuitry and signal processing circuitry. The signal processing circuitry includes a dedicated frequency burst (FB) search hardware circuit which exhibits relatively low noise in comparison with other digital processing circuitry, such as a DSP and MCU, within the system. The RF circuitry, dedicated FB search hardware circuit and the other digital processing circuitry can each be activated and inactivated. In one embodiment, when the RF circuitry and the dedicated FB search hardware are active, other digital processing circuitry remains inactive to avoid noise problems that could degrade reception and interfere with the FB search hardware locating the FB. Noise problems in the system are thus desirably reduced.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: September 22, 2009
    Assignee: St-Ericsson SA
    Inventors: Xue-Mei Gong, Jing Liang, Frederick A. Rush, Phillip M. Matthews, Gannavaram Diwakar Vishakhadatta
  • Publication number: 20090111464
    Abstract: A system includes a communication apparatus coupled to a test subsystem through a converter. The test subsystem may be configured to initiate an audio test of the communication apparatus and receive in response a set of audio test data at a predetermined constant data rate. The communication apparatus may be configured to enable output of audio test data during inactive periods of operation of an RF circuit of the communication apparatus and to disable output of audio test data during active periods of operation of the RF circuit. The converter may be configured to receive the set of audio test data from the communication apparatus and provide the set of audio test data to the test subsystem at the predetermined constant data rate during the active and the inactive periods of operation of the RF circuit.
    Type: Application
    Filed: January 5, 2009
    Publication date: April 30, 2009
    Inventor: Frederick A. Rush
  • Patent number: 7474893
    Abstract: A system includes a communication apparatus coupled to a test subsystem through a converter. The test subsystem may be configured to initiate an audio test of the communication apparatus and receive in response a set of audio test data at a predetermined constant data rate. The communication apparatus may be configured to enable output of audio test data during inactive periods of operation of an RF circuit of the communication apparatus and to disable output of audio test data during active periods of operation of the RF circuit. The converter may be configured to receive the set of audio test data from the communication apparatus and provide the set of audio test data to the test subsystem at the predetermined constant data rate during the active and the inactive periods of operation of the RF circuit.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: January 6, 2009
    Assignee: Silicon Laboratories, Inc.
    Inventor: Frederick A. Rush
  • Patent number: 7433393
    Abstract: A method of operating a radio-frequency (RF) circuitry and a signal-processing circuitry in a mobile telephone apparatus includes at least partially disabling the signal-processing circuitry while transmitting or receiving signals. In one example, a processor is efficiently disabled by generating and servicing an interrupt of relatively high priority. One advantage of this example is that preexisting, legacy code can be maintained, while still achieving the desired objectives. The processor can be enabled by generating and servicing a second high priority interrupt.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: October 7, 2008
    Assignee: NXP B.V.
    Inventors: Shaojie Chen, Frederick A. Rush, G. Diwakar Vishakhadatta, Phillip M. Matthews
  • Patent number: 7380033
    Abstract: A communication apparatus includes a radio frequency circuit that operates on a radio frequency signal and a digital processing circuit coupled to the radio frequency circuit. The digital processing circuit includes a plurality of bus masters coupled to a shared bus. A bus arbiter is provided for arbitrating between requests to access the bus by a first bus master and one or more other bus masters. Accesses by the one or more other bus masters to the bus are restricted in response to a signal indicative of a change in a mode of operation of the RF circuit. In one particular implementation, a communication apparatus employs time domain isolation wherein the digital processing circuit may be placed in a shutdown mode when the radio frequency circuit is active.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: May 27, 2008
    Assignee: NXP B.V.
    Inventors: Phillip M. Matthews, Frederick A. Rush, G. Diwakar Vishakhadatta
  • Patent number: 7251416
    Abstract: Systems and methods for optical cross connects which switch data at a container (packet) level. In one embodiment, a plurality of optical switch edges are coupled to an optical switch core via a minimal number of optical fibers. The switch core is configured to optically switch data from an ingress edge to one of a plurality of egress edges in a nonblocking fashion. The ingress edge receives data streams and distributes the data among a plurality of container processors. Each of these container processors produces an optical signal of a different wavelength, which can then be multiplexed with others to form a multiple-wavelength optical signal that is transmitted to the switch core. The switch core then switches successive portions (containers) of the multiple-wavelength signal to the egress edges to which they are respectively destined. The respective egress edges perform the reverse of this process to form output data signals.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: July 31, 2007
    Assignee: Yotta networks, LLC
    Inventors: Lakshman S. Tamil, Glen Collier, Mitch Entezari, Allesandro Fabbri, Gopalakrishnan Hari, Justin Hunt, Quan Jiang, Bing Li, Lee McFearin, Joseph M. McQuade, Earl Ponceti, Scott A. Rothrock, Frederick A. Rush, Alexander A. Smith, David Wolf