Patents by Inventor Fritz Redeker

Fritz Redeker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8053355
    Abstract: The present invention relates to methods and systems for the metallization of semiconductor devices. One aspect of the present invention is a method of depositing a copper layer onto a barrier layer so as to produce a substantially oxygen free interface therebetween. In one embodiment, the method includes providing a substantially oxide free surface of the barrier layer. The method also includes depositing an amount of atomic layer deposition (ALD) copper on the oxide free surface of the barrier layer effective to prevent oxidation of the barrier layer. The method further includes depositing a gapfill copper layer over the ALD copper. Another aspect of the present invention is a system for depositing a copper layer onto barrier layer so as to produce a substantially oxygen-free interface therebetween. In one embodiment, the integrated system includes at least one barrier deposition module. The system also includes an ALD copper deposition module configured to deposit copper by atomic layer deposition.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 8, 2011
    Assignee: Lam Research Corporation
    Inventors: Fritz Redeker, John Boyd, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Patent number: 8034409
    Abstract: The present invention pertains to methods, apparatuses, and systems for fabricating three-dimensional integrated circuits. One embodiment of the method comprises providing a wafer or other substrate having a plurality of through holes. In addition, the method includes supporting the wafer or other substrate with a wafer or other substrate holder mounted in a process chamber. The method further includes generating a pressure differential between the front side of the wafer or other substrate and the back side of the wafer or other substrate while the wafer or other substrate is supported on the wafer or other substrate holder so that the pressure differential causes fluid flow through the through holes. Also, the method includes establishing process conditions in the process chamber for at least one process to fabricate integrated circuits. Embodiments of a system and embodiments of an apparatus according to the present invention are also presented.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 11, 2011
    Assignee: Lam Research Corporation
    Inventors: Shijian Li, Fritz Redeker, Yezdi Dordi
  • Publication number: 20110143553
    Abstract: Methods and systems for handling a substrate through processes including an integrated electroless deposition process includes processing a surface of the substrate in an electroless deposition module to deposit a layer over conductive features of the substrate using a deposition fluid. The surface of the substrate is then rinsed in the electroless deposition module with a rinsing fluid. The rinsing is controlled to prevent de-wetting of the surface so that a transfer film defined from the rinsing fluid remains coated over the surface of the substrate. The substrate is removed from the electroless deposition module while maintaining the transfer film over the surface of the substrate. The transfer film over the surface of the substrate prevents drying of the surface of the substrate so that the removing is wet. The substrate, once removed from the electroless deposition module, is moved into a post-deposition module while maintaining the transfer film over the surface of the substrate.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 16, 2011
    Applicant: Lam Research Corporation
    Inventors: Yaxin Wang, Shijian Li, Fritz Redeker, John Parks, Artur Kolics, Hyungsuk Alexander Yoon, Tarek Suwwan de Felipe, Mikhail Korolik
  • Publication number: 20110065273
    Abstract: Methods of depositing a barrier layer on an interconnect structure in an atomic deposition environment are provided. One method includes depositing a barrier layer on the interconnect structure with a first nitrogen concentration during a first phase of deposition in the atomic deposition environment, The interconnect structure is formed in a dielectric layer. Then, continuing the deposition of the barrier layer on the interconnect structure with a second nitrogen concentration during a second phase deposition in the atomic deposition environment. The nitrogen concentration step-wisely decreases from the first nitrogen concentration in the first phase of the barrier layer to the second nitrogen concentration in the second phase of the barrier layer, and the first nitrogen concentration is highest where the barrier layer is in contact with the dielectric layer.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 17, 2011
    Applicant: Lam Research Corporation
    Inventors: Hyungsuk Alexander YOON, Fritz Redeker
  • Publication number: 20110061687
    Abstract: Apparatuses for preparing a surface of a substrate using a proximity head includes a carrier to hold and move the substrate along an axis and a proximity head having a head surface with a plurality of outlet ports defined thereon. The proximity head is defined to be positioned proximate and over the carrier and the surface of the substrate. A length of the head surface of the proximity head is defined to be greater than a diameter of the substrate and at least partially overlapping over the carrier when the substrate is present. The proximity head includes a first set of outlet ports in a first region defining a first applicator that is configured to apply a non-Newtonian fluid between a surface of the carrier and the head surface of the proximity head. A second set of outlet ports in a second region of the proximity head defines a second applicator that is configured to apply a first chemistry to the surface of the substrate when present. The second region is adjacent to the first region.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 17, 2011
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Katrina Mikhaylichenko, Mike Ravkin, Fritz Redeker, John M. de Larios, Erik M. Freer, Mikhail Korolik
  • Patent number: 7897213
    Abstract: An apparatus, system and method for preparing a surface of a substrate using a proximity head includes applying a non-Newtonian fluid between the surface of the substrate and a head surface of the proximity head. The non-Newtonian fluid defines a containment wall along one or more sides between the head surface and the surface of the substrate. The one or more sides provided with the non-Newtonian fluid define a treatment region on the substrate between the head surface and the surface of the substrate. A Newtonian fluid is applied to the surface of the substrate through the proximity head, such that the applied Newtonian fluid is substantially contained in the treatment region defined by the containment wall. The contained Newtonian fluid aids in the removal of one or more contaminants from the surface of the substrate. In one example, the non-Newtonian fluid can also be used to create ambient controlled isolated regions, which can assist in controlled processing of surfaces within the regions.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: March 1, 2011
    Assignee: LAM Research Corporation
    Inventors: Katrina Mikhaylichenko, Mike Ravkin, Fritz Redeker, John M. de Larios, Erik M. Freer, Mikhail Korolik
  • Patent number: 7863179
    Abstract: Various embodiments provide improved processes and systems that produce a barrier layer with decreasing nitrogen concentration with the increase of film thickness. A barrier layer with decreasing nitrogen concentration with film thickness allows the end of barrier layer with high nitrogen concentration to have good adhesion with a dielectric layer and the end of barrier layer with low nitrogen concentration (or metal-rich) to have good adhesion with copper. An exemplary method of depositing a barrier layer on an interconnect structure is provided. The method includes (a) providing an atomic layer deposition environment, (b) depositing a barrier layer on the interconnect structure with a first nitrogen concentration during a first phase of deposition in the atomic layer deposition environment.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: January 4, 2011
    Assignee: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, Fritz Redeker
  • Publication number: 20100313918
    Abstract: A substrate holder is defined to support a substrate. A rotating mechanism is defined to rotate the substrate holder. An applicator is defined to extend over the substrate holder to dispense a cleaning material onto a surface of the substrate when present on the substrate holder. The applicator is defined to apply a downward force to the cleaning material on the surface of the substrate. In one embodiment the cleaning material is gelatinous.
    Type: Application
    Filed: August 24, 2010
    Publication date: December 16, 2010
    Applicant: Lam Research Corporation
    Inventors: Mikhail Korolik, Erik M. Freer, John M.de Larios, Katrina Mikhaylichenko, Mike Ravkin, Fritz Redeker
  • Publication number: 20100317556
    Abstract: A cleaning compound is disclosed for removing particulate contaminants from a semiconductor substrate surface. The cleaning compound includes a liquid and carboxylic acid solid components dispersed in a substantially uniform manner in the liquid. A concentration of the carboxylic acid solid components in the liquid exceeds a solubility limit of the carboxylic acid solid components in the liquid. In one embodiment, a concentration of the carboxylic acid solid components in the liquid is within a range extending from about 3 percent by weight to about 5 percent by weight. In one embodiment, the carboxylic acid solid components are defined by a carbon number of at least four. The carboxylic acid solid components are defined to interact with the particulate contaminants on the semiconductor substrate surface to remove the particulate contaminants from the semiconductor substrate surface. The cleaning compound is viscous and may be formed as a gel.
    Type: Application
    Filed: August 24, 2010
    Publication date: December 16, 2010
    Applicant: Lam Research Corporation
    Inventors: Mikhail Korolik, Erik M. Freer, John M. de Larios, Katrina Mikhaylichenko, Mike Ravkin, Fritz Redeker
  • Publication number: 20100267229
    Abstract: The present invention relates to methods and systems for the metallization of semiconductor devices. One aspect of the present invention is a method of depositing a copper layer onto a barrier layer so as to produce a substantially oxygen free interface therebetween. In one embodiment, the method includes providing a substantially oxide free surface of the barrier layer. The method also includes depositing an amount of atomic layer deposition (ALD) copper on the oxide free surface of the barrier layer effective to prevent oxidation of the barrier layer. The method further includes depositing a gapfill copper layer over the ALD copper. Another aspect of the present invention is a system for depositing a copper layer onto barrier layer so as to produce a substantially oxygen-free interface therebetween. In one embodiment, the integrated system includes at least one barrier deposition module. The system also includes an ALD copper deposition module configured to deposit copper by atomic layer deposition.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Inventors: Fritz Redeker, John Boyd, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Patent number: 7799141
    Abstract: Cleaning compounds, apparatus, and methods to remove contaminants from a substrate surface are provided. An exemplary cleaning compound to remove particulate contaminants from a semiconductor substrate surface is provided. The cleaning compound includes a viscous liquid with a viscosity between about 1 cP to about 10,000 cP. The cleaning compound also includes a plurality of solid components dispersed in the viscous liquid, the plurality of solid components interact with the particulate contaminants on the substrate surface to remove the particulate contaminants from the substrate surface.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: September 21, 2010
    Assignee: Lam Research Corporation
    Inventors: Mikhail Korolik, Erik M. Freer, John M. de Larios, Katrina Mikhaylichenko, Mike Ravkin, Fritz Redeker
  • Patent number: 7758404
    Abstract: An apparatus, system and method for cleaning a substrate edge include a composite applicator that cleans bevel polymers deposited on wafer edges using frictional contact in the presence of fluids. The composite applicator includes a support material and a plurality of abrasive particles distributed within and throughout the support material. The composite applicator cleans the edge of the wafer by allowing frictional contact of the plurality of abrasive particles with the edge of the wafer in the presence of fluids, such as liquid chemicals, to cut, rip and tear the bevel polymer from the edge of the wafer.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: July 20, 2010
    Assignee: Lam Research Corporation
    Inventors: Jason A. Ryder, Ji Zhu, Mark Wilcoxson, Fritz Redeker, John P. Parks, Charles Ditmore, Jeffrey G. Gasparitsch
  • Patent number: 7749893
    Abstract: The present invention relates to methods and systems for the metallization of semiconductor devices. One aspect of the present invention is a method of depositing a copper layer onto a barrier layer so as to produce a substantially oxygen free interface therebetween. In one embodiment, the method includes providing a substantially oxide free surface of the barrier layer. The method also includes depositing an amount of atomic layer deposition (ALD) copper on the oxide free surface of the barrier layer effective to prevent oxidation of the barrier layer. The method further includes depositing a gapfill copper layer over the ALD copper. Another aspect of the present invention is a system for depositing a copper layer onto barrier layer so as to produce a substantially oxygen-free interface therebetween. In one embodiment, the integrated system includes at least one barrier deposition module. The system also includes an ALD copper deposition module configured to deposit copper by atomic layer deposition.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: July 6, 2010
    Assignee: Lam Research Corporation
    Inventors: Fritz Redeker, John Boyd, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Publication number: 20100044867
    Abstract: Presented are methods of fabricating three-dimensional integrated circuits that include post-contact back end of line through-hole via integration for the three-dimensional integrated circuits. Another aspect of the present invention includes three-dimensional integrated circuits fabricated according to methods of the present invention.
    Type: Application
    Filed: November 5, 2009
    Publication date: February 25, 2010
    Inventors: John Boyd, Fritz Redeker, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Publication number: 20100009535
    Abstract: This invention pertains to methods and systems for fabricating semiconductor devices. One aspect of the present invention is a method of depositing a gapfill copper layer onto a barrier layer for semiconductor device metallization. In one embodiment, the method includes forming the barrier layer on a surface of a substrate and subjecting the barrier layer to a process condition so as to form a removable passivated surface on the barrier layer. The method further includes removing the passivated surface from the barrier layer and depositing the gapfill copper layer onto the barrier layer. Another aspect of the present invention is an integrated system for depositing a copper layer onto a barrier layer for semiconductor device metallization.
    Type: Application
    Filed: September 18, 2009
    Publication date: January 14, 2010
    Inventors: Yezdi Dordi, John Boyd, Fritz Redeker, William Thie, Tiruchirapalli Arunagiri, Alex Yoon
  • Patent number: 7625452
    Abstract: A method for cleaning a substrate is provided. The method includes providing foam to a surface of the substrate, brush scrubbing the surface of the substrate, providing pressure to the foam, and channeling the pressured foam to produce jammed foam, the channeling including channeling the pressured foam into a gap, the gap being defined by a space between a surface of a brush enclosure and the surface of the substrate. The brush scrubbing of the surface of the substrate and the channeling of the pressured foam across the surface of the substrate facilitate particle removal from the surface of the substrate.
    Type: Grant
    Filed: September 14, 2008
    Date of Patent: December 1, 2009
    Assignee: Lam Research Corporation
    Inventors: John M. de Larios, Aleksander Owczarz, Alan Schoepp, Fritz Redeker
  • Patent number: 7615480
    Abstract: Presented are methods of fabricating three-dimensional integrated circuits that include post-contact back end of line through-hole via integration for the three-dimensional integrated circuits. In one embodiment, the method comprises forming metal plug contacts through a hard mask and a premetal dielectric to transistors in the semiconductor. The method also includes etching a hole for a through-hole via through the hard mask to the semiconductor using a patterned photoresist process, removing the patterned photoresist and using a hard mask process to etch the hole to an amount into the semiconductor. The method further includes depositing a dielectric liner to isolate the hole from the semiconductor, depositing a gapfill metal to fill the hole, and planarizing the surface of the substrate to the hard mask. Another aspect of the present invention includes three-dimensional integrated circuits fabricated according to methods of the present invention.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: November 10, 2009
    Assignee: Lam Research Corporation
    Inventors: John Boyd, Fritz Redeker, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Patent number: 7592259
    Abstract: This invention pertains to methods and systems for fabricating semiconductor devices. One aspect of the present invention is a method of depositing a gapfill copper layer onto barrier layer for semiconductor device metallization. In one embodiment, the method includes forming the barrier layer on a surface of a substrate and subjecting the barrier layer to a process condition so as to form a removable passivated surface on the barrier layer. The method further includes removing the passivated surface from the barrier layer and depositing the gapfill copper layer onto the barrier layer. Another aspect of the present invention is an integrated system for depositing a copper layer onto a barrier layer for semiconductor device metallization.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: September 22, 2009
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, Fritz Redeker, William Thie, Tiruchirapalli Arunagiri, Alex Yoon
  • Patent number: 7584761
    Abstract: A method for cleaning an edge surface of a semiconductor substrate is disclosed. The proximity head unit is positioned so that the flow head portion and the collection head portion of the proximity head unit are proximate to the edge surface of the semiconductor substrate. The semiconductor substrate is then rotated using one or more powered rollers. During the rotation of the semiconductor substrate, the flow head portion applies a fluid to the edge surface while the collection head portion collects fluid from the edge surface. Additional methods, an apparatuses, and a system for cleaning an edge surface of a semiconductor substrate are also described.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: September 8, 2009
    Assignee: Lam Research Corporation
    Inventors: Seokmin Yun, John M. Boyd, John M. de Larios, Fritz Redeker
  • Patent number: 7568490
    Abstract: An apparatus and method are disclosed in which a semiconductor substrate having a surface containing contaminants is cleaned or otherwise subjected to chemical treatment using a foam. The semiconductor wafer is supported either on a stiff support (or a layer of foam) and foam is provided on the opposite surface of the semiconductor wafer while the semiconductor wafer is supported. The foam contacting the semiconductor wafer is pressurized using a form to produce a jammed foam. Relative movement between the form and the semiconductor wafer, such as oscillation parallel and/or perpendicular to the top surface of the semiconductor wafer, is then induced while the jammed foam is in contact with the semiconductor wafer to remove the undesired contaminants and/or otherwise chemically treat the surface of the semiconductor wafer using the foam.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: August 4, 2009
    Assignee: Lam Research Corporation
    Inventors: John M. de Larios, Mike Ravkin, Jeffrey Farber, Mikhail Korolik, Fritz Redeker, Aleksander Owczarz