Patents by Inventor Fu-Chih Yang

Fu-Chih Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240014260
    Abstract: High voltage semiconductor devices are described herein. An exemplary semiconductor device includes a substrate, a first doped region disposed in the substrate and doped with a first doping polarity, and a second doped region disposed in the substrate and horizontally outside the first doped region. The second doped region is doped with a second doping polarity opposite to the first doping polarity. The semiconductor device further includes a third doped region disposed completely within the first doped region. The third doped region is doped with the second doping polarity. The semiconductor device further includes a first isolation structure disposed over the first doped region and spaced apart from the second doped region and the third doped region, a second isolation structure disposed over the first doped region and the third doped region, and a resistor disposed over the first isolation structure.
    Type: Application
    Filed: June 12, 2023
    Publication date: January 11, 2024
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
  • Publication number: 20230369449
    Abstract: The transistor includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A carrier channel is located between the first III-V compound layer and the second III-V compound layer. A source feature and a drain feature are disposed on the second III-V compound layer.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 16, 2023
    Inventors: Chun-Wei Hsu, Jiun-Lei Jerry Yu, Fu-Wei Yao, Chen-Ju Yu, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 11804538
    Abstract: A method of forming a high electron mobility transistor (HEMT) includes a first III-V compound layer and a second III-V compound layer disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A source feature and a drain feature are disposed on the second III-V compound layer. A p-type layer is disposed on a portion of the second III-V compound layer between the source feature and the drain feature. A gate electrode is disposed on the p-type layer. A capping layer is disposed on the second III-V compound layer.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: October 31, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Wei Hsu, Jiun-Lei Jerry Yu, Fu-Wei Yao, Chen-Ju Yu, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 11676997
    Abstract: High voltage semiconductor devices are described herein. An exemplary semiconductor device includes a first doped region and a second doped region disposed in a substrate. The first doped region and the second doped region are oppositely doped and adjacently disposed in the substrate. A first isolation structure and a second isolation structure are disposed over the substrate, such that each are disposed at least partially over the first doped region. The first isolation structure is spaced apart from the second isolation structure. A resistor is disposed over a portion of the first isolation structure and electrically coupled to the first doped region. A field plate disposed over a portion of the second doped region and electrically coupled to the second doped region.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: June 13, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
  • Patent number: 11410991
    Abstract: Some embodiments relate to an integrated circuit. The integrated circuit includes a ring-shaped drain region having an inner edge and an outer edge. A channel region surrounds the ring-shaped drain region. A source region surrounds the channel region. The channel region separates the drain region from the source region. A gate electrode is arranged over the channel region and is separated from the channel region by a gate dielectric. An inner edge of the gate electrode is proximate to the drain region. A resistor structure is arranged over and spaced apart from an upper surface of the substrate. The resistor structure has a first end and a second end which are connected by a curved or polygonal path of resistive material. The first end is coupled to the ring-shaped drain. The resistor has an outer perimeter that is surrounded by the inner edge of the ring-shaped drain region.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: August 9, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ker Hsiao Huo, Fu-Chih Yang, Chun Lin Tsai, Yi-Min Chen, Chih-Yuan Chan
  • Patent number: 11404557
    Abstract: A method of forming a high electron mobility transistor (HEMT) includes a first III-V compound layer and a second III-V compound layer disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A source feature and a drain feature are disposed on the second III-V compound layer. A p-type layer is disposed on a portion of the second III-V compound layer between the source feature and the drain feature. A gate electrode is disposed on the p-type layer. A capping layer is disposed on the second III-V compound layer.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: August 2, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Wei Hsu, Jiun-Lei Jerry Yu, Fu-Wei Yao, Chen-Ju Yu, Fu-Chih Yang, Chun Lin Tsai
  • Publication number: 20210280689
    Abstract: A method of forming a high electron mobility transistor (HEMT) includes a first III-V compound layer and a second III-V compound layer disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A source feature and a drain feature are disposed on the second III-V compound layer. A p-type layer is disposed on a portion of the second III-V compound layer between the source feature and the drain feature. A gate electrode is disposed on the p-type layer. A capping layer is disposed on the second III-V compound layer.
    Type: Application
    Filed: May 26, 2021
    Publication date: September 9, 2021
    Inventors: Chun-Wei HSU, Jiun-Lei Jerry YU, Fu-Wei YAO, Chen-Ju YU, Fu-Chih YANG, Chun Lin TSAI
  • Patent number: 11069805
    Abstract: A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: July 20, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
  • Publication number: 20210175227
    Abstract: Some embodiments relate to an integrated circuit. The integrated circuit includes a ring-shaped drain region having an inner edge and an outer edge. A channel region surrounds the ring-shaped drain region. A source region surrounds the channel region. The channel region separates the drain region from the source region. A gate electrode is arranged over the channel region and is separated from the channel region by a gate dielectric. An inner edge of the gate electrode is proximate to the drain region. A resistor structure is arranged over and spaced apart from an upper surface of the substrate. The resistor structure has a first end and a second end which are connected by a curved or polygonal path of resistive material. The first end is coupled to the ring-shaped drain. The resistor has an outer perimeter that is surrounded by the inner edge of the ring-shaped drain region.
    Type: Application
    Filed: January 22, 2021
    Publication date: June 10, 2021
    Inventors: Ker Hsiao Huo, Fu-Chih Yang, Chun Lin Tsai, Yi-Min Chen, Chih-Yuan Chan
  • Patent number: 10923467
    Abstract: Some embodiments relate to an integrated circuit. The integrated circuit includes a ring-shaped drain region having an inner edge and an outer edge. A channel region surrounds the ring-shaped drain region. A source region surrounds the channel region. The channel region separates the drain region from the source region. A gate electrode is arranged over the channel region and is separated from the channel region by a gate dielectric. An inner edge of the gate electrode is proximate to the drain region. A resistor structure is arranged over and spaced apart from an upper surface of the substrate. The resistor structure has a first end and a second end which are connected by a curved or polygonal path of resistive material. The first end is coupled to the ring-shaped drain. The resistor has an outer perimeter that is surrounded by the inner edge of the ring-shaped drain region.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: February 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ker Hsiao Huo, Fu-Chih Yang, Chun Lin Tsai, Yi-Min Chen, Chih-Yuan Chan
  • Patent number: 10867990
    Abstract: Some embodiments relate to a method. In the method, a semiconductor substrate is provided. Dopant impurities of a first dopant conductivity are implanted into the semiconductor substrate to form a body region. A gate dielectric and a field oxide region are formed over the semiconductor substrate. A polysilicon layer is formed over the gate dielectric and field oxide region. The polysilicon layer is patterned to concurrently form a conductive gate electrode over the gate dielectric and a resistor structure over the field oxide region. The resistor structure is perimeterally bounded by an inner edge of the conductive gate electrode. Dopant impurities of a second dopant conductivity, which is opposite the first dopant conductivity, are implanted into the semiconductor substrate to form a source region and a drain region. The drain region is perimeterally bounded by the inner edge of the conductive gate electrode.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ker Hsiao Huo, Fu-Chih Yang, Chun Lin Tsai, Yi-Min Chen, Chih-Yuan Chan
  • Patent number: 10868135
    Abstract: A high electron mobility transistor (HEMT) includes a silicon substrate, an unintentionally doped gallium nitride (UID GaN) layer over the silicon substrate. The HEMT further includes a donor-supply layer over the UID GaN layer, a gate structure, a drain, and a source over the donor-supply layer. The HEMT further includes a dielectric layer having one or more dielectric plug portions in the donor-supply layer and top portions between the gate structure and the drain over the donor-supply layer. A method for making the HEMT is also provided.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Ju Yu, Chih-Wen Hsiung, Fu-Wei Yao, Chun-Wei Hsu, King-Yuen Wong, Jiun-Lei Jerry Yu, Fu-Chih Yang
  • Patent number: 10868134
    Abstract: A channel layer is grown over a substrate, and an active layer is grown over the channel layer, wherein the active layer has a band gap discontinuity with the channel layer. A dielectric layer is deposited over the active layer, and the dielectric layer is patterned to expose a portion of the active layer. A metal diffusion barrier is formed over the exposed portion of the active layer, and a gate is deposited over the metal diffusion barrier.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: King-Yuen Wong, Po-Chih Chen, Chen-Ju Yu, Fu-Chih Yang, Jiun-Lei Jerry Yu, Fu-Wei Yao, Ru-Yi Su, Yu-Syuan Lin
  • Publication number: 20200373408
    Abstract: A method of forming a high electron mobility transistor (HEMT) includes a first III-V compound layer and a second III-V compound layer disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A source feature and a drain feature are disposed on the second III-V compound layer. A p-type layer is disposed on a portion of the second III-V compound layer between the source feature and the drain feature. A gate electrode is disposed on the p-type layer. A capping layer is disposed on the second III-V compound layer.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Inventors: Chun-Wei HSU, Jiun-Lei Jerry YU, Fu-Wei YAO, Chen-Ju YU, Fu-Chih YANG, Chun Lin TSAI
  • Patent number: 10790375
    Abstract: A high electron mobility transistor (HEMT) includes a first compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A salicide source feature and a salicide drain feature are in contact with the first III-V compound layer through the second III-V compound layer. A gate electrode is disposed over a portion of the second compound layer between the salicide source feature and the salicide drain feature.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: September 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Fu-Wei Yao, Chen-Ju Yu, King-Yuen Wong, Chun-Wei Hsu, Jiun-Lei Jerry Yu, Fu-Chih Yang, Chun Lin Tsai
  • Publication number: 20200303496
    Abstract: High voltage semiconductor devices are described herein. An exemplary semiconductor device includes a first doped region and a second doped region disposed in a substrate. The first doped region and the second doped region are oppositely doped and adjacently disposed in the substrate. A first isolation structure and a second isolation structure are disposed over the substrate, such that each are disposed at least partially over the first doped region. The first isolation structure is spaced apart from the second isolation structure. A resistor is disposed over a portion of the first isolation structure and electrically coupled to the first doped region. A field plate disposed over a portion of the second doped region and electrically coupled to the second doped region.
    Type: Application
    Filed: June 12, 2020
    Publication date: September 24, 2020
    Inventors: Ru-Yi SU, Fu-Chih YANG, Chun Lin TSAI, Chih-Chang CHENG, Ruey-Hsin LIU
  • Patent number: 10741665
    Abstract: A high electron mobility transistor (HEMT) includes a first III-V compound layer and a second III-V compound layer disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A source feature and a drain feature are disposed on the second III-V compound layer. A p-type layer is disposed on a portion of the second III-V compound layer between the source feature and the drain feature. A gate electrode is disposed on the p-type layer. A capping layer is disposed on the second III-V compound layer.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: August 11, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Wei Hsu, Jiun-Lei Jerry Yu, Fu-Wei Yao, Chen-Ju Yu, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 10686032
    Abstract: High voltage semiconductor devices are described herein. An exemplary semiconductor device includes a first doped region and a second doped region disposed in a substrate. The first doped region and the second doped region are oppositely doped and adjacently disposed in the substrate. A first isolation structure and a second isolation structure are disposed over the substrate, such that each are disposed at least partially over the first doped region. The first isolation structure is spaced apart from the second isolation structure. A resistor is disposed over a portion of the first isolation structure and electrically coupled to the first doped region. A field plate disposed over a portion of the second doped region and electrically coupled to the second doped region.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: June 16, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
  • Publication number: 20200111909
    Abstract: A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.
    Type: Application
    Filed: December 5, 2019
    Publication date: April 9, 2020
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
  • Publication number: 20200043912
    Abstract: Some embodiments relate to a method. In the method, a semiconductor substrate is provided. Dopant impurities of a first dopant conductivity are implanted into the semiconductor substrate to form a body region. A gate dielectric and a field oxide region are formed over the semiconductor substrate. A polysilicon layer is formed over the gate dielectric and field oxide region. The polysilicon layer is patterned to concurrently form a conductive gate electrode over the gate dielectric and a resistor structure over the field oxide region. The resistor structure is perimeterally bounded by an inner edge of the conductive gate electrode. Dopant impurities of a second dopant conductivity, which is opposite the first dopant conductivity, are implanted into the semiconductor substrate to form a source region and a drain region. The drain region is perimeterally bounded by the inner edge of the conductive gate electrode.
    Type: Application
    Filed: September 26, 2019
    Publication date: February 6, 2020
    Inventors: Ker Hsiao Huo, Fu-Chih Yang, Chun Lin Tsai, Yi-Min Chen, Chih-Yuan Chan