Patents by Inventor Fu-Kai Yang

Fu-Kai Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10741438
    Abstract: A method includes forming a first and a second contact opening to reveal a first and a second source/drain region, respectively, forming a mask layer having a first and a second portion in the first and the second contact openings, respectively, forming a first and a second sacrificial ILD in the first and the second contact openings, respectively, removing the first sacrificial ILD from the first contact opening, filling a filler in the first contact opening, and etching the second sacrificial ILD. The filler protects the first portion of the mask layer from being etched. An ILD is formed in the second contact opening and on the second portion of the mask layer. The filler and the first portion of the mask layer are removed using a wet etch to reveal the first contact opening. A contact plug is formed in the first contact opening.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: August 11, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shao-Ming Koh, Chen-Ming Lee, Fu-Kai Yang
  • Publication number: 20200243344
    Abstract: A semiconductor device includes: an isolation insulating layer; fin structures protruding from the isolation insulating layer; gate structures, each having a metal gate and a cap insulating layer disposed over the metal gate; a first source/drain epitaxial layer and a second source/drain epitaxial layer disposed between two adjacent gate structures; and a first conductive contact disposed on the first source/drain epitaxial layer, and a second conductive contact disposed on the second source/drain epitaxial layer; a separation isolation region disposed between the first and second conductive contact; and an insulating layer disposed between the separation isolation region and the isolation insulating layer. The separation isolation region is made of a different material than the insulating layer.
    Type: Application
    Filed: January 28, 2020
    Publication date: July 30, 2020
    Inventors: Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG
  • Patent number: 10727068
    Abstract: Semiconductor structures and methods for forming the same are provided. The method includes forming a dummy gate structure and forming a spacer on a lower portion of a sidewall of the dummy gate structure and exposing an upper portion of the sidewall of the dummy gate structure. The method further includes forming a dielectric layer covering the upper portion of the sidewall of the dummy gate structure exposed by the spacer and removing the dummy gate structure to form a tube-shaped trench. The method further includes removing a portion of the dielectric layer to form a cone-shaped trench and forming a gate structure in a bottom portion of the tube-shaped trench. The method further includes forming a hard mask structure in the cone-shaped trench and an upper portion of the tube-shaped trench, and an interface between the hard mask structure and the dielectric layer overlaps the spacer.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: July 28, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Ying Lin, Mei-Yun Wang, Hsien-Cheng Wang, Fu-Kai Yang, Shih-Wen Liu, Hsiao-Chiu Hsu
  • Patent number: 10685880
    Abstract: A method includes providing a device structure having an isolation structure, a fin adjacent the isolation structure and taller than the isolation structure, and gate structures over the fin and the isolation structure. The isolation structure, the fin, and the gate structures define a first trench over the fin and a second trench over the isolation structure. The method further includes forming a first contact etch stop layer (CESL) over the gate structures, the fin, and the isolation structure; depositing a first inter-layer dielectric (ILD) layer over the first CESL and filling in the first and second trenches; and recessing the first ILD layer such that the first ILD layer in the first trench is removed and the first ILD layer in the second trench is recessed to a level that is about even with a top surface of the fin.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: June 16, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yun Lee, Chen-Ming Lee, Fu-Kai Yang, Yi-Jyun Huang, Sheng-Hsiung Wang, Mei-Yun Wang
  • Publication number: 20200135550
    Abstract: In an embodiment, a method includes: forming a differential contact etch stop layer (CESL) having a first portion over a source/drain region and a second portion along a gate stack, the source/drain region being in a substrate, the gate stack being over the substrate proximate the source/drain region, a first thickness of the first portion being greater than a second thickness of the second portion; depositing a first interlayer dielectric (ILD) over the differential CESL; forming a source/drain contact opening in the first ILD; forming a contact spacer along sidewalls of the source/drain contact opening; after forming the contact spacer, extending the source/drain contact opening through the differential CESL; and forming a first source/drain contact in the extended source/drain contact opening, the first source/drain contact physically and electrically coupling the source/drain region, the contact spacer physically separating the first source/drain contact from the first ILD.
    Type: Application
    Filed: June 3, 2019
    Publication date: April 30, 2020
    Inventors: Chun-Han Chen, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chung-Ting Ko, Jr-Hung Li, Chi On Chui
  • Publication number: 20200135871
    Abstract: Examples of an integrated circuit with an interconnect structure and a method for forming the integrated circuit are provided herein. In some examples, the method includes receiving a workpiece that includes an inter-level dielectric layer. A first contact that includes a fill material is formed that extends through the inter-level dielectric layer. The inter-level dielectric layer is recessed such that the fill material extends above a top surface of the inter-level dielectric layer. An etch-stop layer is formed on the inter-level dielectric layer such that the fill material of the first contact extends into the etch-stop layer. A second contact is formed extending through the etch-stop layer to couple to the first contact. In some such examples, the second contact physically contacts a top surface and a side surface of the first contact.
    Type: Application
    Filed: February 20, 2019
    Publication date: April 30, 2020
    Inventors: Chen-Hung Tsai, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20200111867
    Abstract: Semiconductor devices and methods of fabricating semiconductor devices are provided. The present disclosure provides a semiconductor device that includes a first fin structure and a second fin structure each extending from a substrate; a first gate segment over the first fin structure and a second gate segment over the second fin structure; a first isolation feature separating the first and second gate segments; a first source/drain (S/D) feature over the first fin structure and adjacent to the first gate segment; a second S/D feature over the second fin structure and adjacent to the second gate segment; and a second isolation feature also disposed in the trench. The first and second S/D features are separated by the second isolation feature, and a composition of the second isolation feature is different from a composition of the first isolation feature.
    Type: Application
    Filed: December 5, 2019
    Publication date: April 9, 2020
    Inventors: I-Wen Wu, Fu-Kai Yang, Chen-Ming B. Lee, Mei-Yun Wang, Jr-Hung Li, Bo-Cyuan Lu
  • Publication number: 20200098632
    Abstract: An integrated circuit includes a substrate, an isolation feature disposed over the substrate, a fin extending from the substrate alongside the isolation feature such that the fin extends above the isolation feature, and a dielectric layer disposed over the isolation feature. A top surface of the dielectric layer is at a same level as a top surface of the fin or below a top surface of the fin by less than or equal to 15 nanometers.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 26, 2020
    Inventors: Yun Lee, Chen-Ming Lee, Fu-Kai Yang, Yi-Jyun Huang, Sheng-Hsiung Wang, Mei-Yun Wang
  • Publication number: 20200083119
    Abstract: A method includes providing a structure that includes a substrate, a first gate structure and a second gate structure over the substrate, and a first source/drain (S/D) feature and a second S/D feature over the substrate. The first S/D feature is adjacent to the first gate structure, the second S/D feature is adjacent to the second gate structure, the first S/D feature is configured for an n-type transistor, and the second S/D feature is configured for a p-type transistor. The method further includes introducing a p-type dopant into both the first and the second S/D features. After the introducing of the p-type dopant, the method further includes performing an etching process to the first and the second S/D features, wherein the etching process etches the first S/D feature faster than it etches the second S/D feature.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 12, 2020
    Inventors: Shao-Ming Koh, Chen-Ming Lee, I-Wen Wu, Fu-Kai Yang, Jia-Heng Wang, Mei-Yun Wang
  • Publication number: 20200083118
    Abstract: A semiconductor device includes an n-type FET device and a p-type FET device. The n-type FET device includes a first substrate region, a first gate stack, a first gate spacer over sidewalls of the first gate stack, and an n-type epitaxial feature in a source/drain (S/D) region of the n-type FET device. The p-type FET device includes a second substrate region, a second gate stack, a second gate spacer over sidewalls of the second gate stack, and a p-type epitaxial feature in an S/D region of the p-type FET device. A vertical distance between a bottom surface of the first gate spacer and a lowest point of an upper surface of the n-type epitaxial feature is greater than a vertical distance between a bottom surface of the second gate spacer and a lowest point of an upper surface of the p-type epitaxial feature.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 12, 2020
    Inventors: Shao-Ming Koh, Chen-Ming Lee, I-Wen Wu, Fu-Kai Yang, Jia-Heng Wang, Mei-Yun Wang
  • Publication number: 20200075725
    Abstract: A method of semiconductor fabrication includes providing a semiconductor structure having a substrate and first, second, third, and fourth fins above the substrate. The method further includes forming an n-type epitaxial source/drain (S/D) feature on the first and second fins, forming a p-type epitaxial S/D feature on the third and fourth fins, and performing a selective etch process on the semiconductor structure to remove upper portions of the n-type epitaxial S/D feature and the p-type epitaxial S/D feature such that more is removed from the n-type epitaxial S/D feature than the p-type epitaxial S/D feature.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 5, 2020
    Inventors: I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chun-An Lin, Wei-Yuan Lu, Guan-Ren Wang, Peng Wang
  • Publication number: 20200075339
    Abstract: A method includes forming a first trench in an isolation region; forming a second trench in a device region, wherein the device region is disposed adjacent to the isolation region and each of the first and second trenches is disposed between two metal gate structures; forming a first dielectric layer in the first and the second trenches; forming a second dielectric layer over and different from the first dielectric layer; removing a portion of the second dielectric layer from the first and the second trenches, leaving behind a remaining portion of the second dielectric layer in the first trench; removing a portion of the first dielectric layer formed over a bottom surface of the second trench; subsequent to removing the portion of the first dielectric layer, removing the remaining portion of second dielectric layer from the first trench; and forming contact features in the first and the second trenches.
    Type: Application
    Filed: March 27, 2019
    Publication date: March 5, 2020
    Inventors: Chen-Hung Tsai, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20200075421
    Abstract: A method includes providing a structure having first and second fins over a substrate and oriented lengthwise generally along a first direction and source/drain (S/D) features over the first and second fins; forming an interlayer dielectric (ILD) layer covering the S/D features; performing a first etching process at least to an area between the S/D features, thereby forming a trench in the ILD layer; depositing a dielectric material in the trench; performing a second etching process to selectively recess the dielectric material; and performing a third etching process to selectively recess the ILD layer, thereby forming a contact hole that exposes the S/D features.
    Type: Application
    Filed: August 9, 2019
    Publication date: March 5, 2020
    Inventors: I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chang-Yun Chang, Ching-Feng Fu, Peng Wang
  • Publication number: 20200075724
    Abstract: A method includes forming an epitaxial source/drain (S/D) feature over a semiconductor layer, where the epitaxial S/D feature includes silicon (Si) and germanium (Ge), forming a trench to expose a portion of the epitaxial S/D feature, annealing the exposed portion of the epitaxial S/D feature, where the annealing forms at a top surface of the epitaxial S/D feature a first region having a first Ge concentration and a second region disposed below the first region having a second Ge concentration that is less than the first Ge concentration, oxidizing the first region, removing the oxidized first region, and forming an S/D contact in the trench over the second region.
    Type: Application
    Filed: May 10, 2019
    Publication date: March 5, 2020
    Inventors: Jia-Heng Wang, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20200058747
    Abstract: A FinFET device structure and method for forming the same is provided. The FinFET device structure includes an isolation structure formed over a substrate, and a gate structure formed over the isolation structure. The FinFET device structure includes a first dielectric layer formed over the isolation structure and adjacent to the gate structure and a source/drain (S/D) contact structure formed in the first dielectric layer. The FinFET device structure also includes a deep contact structure formed through the first dielectric layer and adjacent to the S/D contact structure. The deep contact structure is through the isolation structure, and a bottom surface of the S/D contact structure is higher than a bottom surface of the deep contact structure.
    Type: Application
    Filed: June 5, 2019
    Publication date: February 20, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ting FANG, Da-Wen LIN, Fu-Kai YANG, Chen-Ming LEE, Mei-Yun WANG
  • Publication number: 20200051821
    Abstract: Semiconductor structures and methods for forming the same are provided. The method includes forming a dummy gate structure and forming a spacer on a lower portion of a sidewall of the dummy gate structure and exposing an upper portion of the sidewall of the dummy gate structure. The method further includes forming a dielectric layer covering the upper portion of the sidewall of the dummy gate structure exposed by the spacer and removing the dummy gate structure to form a tube-shaped trench. The method further includes removing a portion of the dielectric layer to form a cone-shaped trench and forming a gate structure in a bottom portion of the tube-shaped trench. The method further includes forming a hard mask structure in the cone-shaped trench and an upper portion of the tube-shaped trench, and an interface between the hard mask structure and the dielectric layer overlaps the spacer.
    Type: Application
    Filed: October 8, 2019
    Publication date: February 13, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Ying LIN, Mei-Yun WANG, Hsien-Cheng WANG, Fu-Kai YANG, Shih-Wen LIU, Hsiao-Chiu HSU
  • Publication number: 20200043924
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a first gate structure formed over a fin structure, and a first capping layer formed over the first gate structure. The FinFET device structure includes a first etching stop layer formed over the first capping layer and the first gate structure, and a top surface and a sidewall surface of the first capping layer are in direct contact with the first etching stop layer.
    Type: Application
    Filed: October 8, 2019
    Publication date: February 6, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Han CHEN, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG, Jr-Hung LI, Bo-Cyuan LU
  • Patent number: 10546755
    Abstract: A semiconductor device includes: an isolation insulating layer; fin structures protruding from the isolation insulating layer; gate structures, each having a metal gate and a cap insulating layer disposed over the metal gate; a first source/drain epitaxial layer and a second source/drain epitaxial layer disposed between two adjacent gate structures; and a first conductive contact disposed on the first source/drain epitaxial layer, and a second conductive contact disposed on the second source/drain epitaxial layer; a separation isolation region disposed between the first and second conductive contact; and an insulating layer disposed between the separation isolation region and the isolation insulating layer. The separation isolation region is made of a different material than the insulating layer.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: January 28, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20200020541
    Abstract: A method includes forming a metal gate structure, wherein the metal gate structure includes a gate dielectric layer and a gate electrode; performing a surface treatment to a top surface of the metal gate structure, wherein the surface treatment converts a top portion of the gate electrode to an oxidation layer; forming a conductive layer above the gate electrode, wherein the forming of the conductive layer includes substituting oxygen in the oxidation layer with a metallic element; and forming a contact feature above the metal gate structure, wherein the contact feature is in direct contact with the conductive layer.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 16, 2020
    Inventors: Pang-Sheng Chang, Yu-Feng Yin, Chao-Hsun Wang, Kuo-Yi Chao, Fu-Kai Yang, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao, Chia-Yang Hung, Chia-Sheng Chang, Shu-Huei Suen, Jyu-Horng Shieh, Sheng-Liang Pan, Jack Kuo-Ping Kuo, Shao-Jyun Wu
  • Patent number: 10535555
    Abstract: A method includes forming a transistor including forming a source/drain region on a side of a dummy gate stack, forming a first Inter-Layer Dielectric (ILD) covering the source/drain region, and replacing the dummy gate stack with a replacement gate stack. The method further includes forming a second ILD over the first ILD and the replacement gate stack, and forming a lower source/drain contact plug electrically coupling to the source/drain region. The lower source/drain contact plug penetrates through both the first ILD and the second ILD. A third ILD is formed over the second ILD. A gate contact plug is formed in the second ILD and the third ILD. An upper source/drain contact plug is formed overlapping and contacting the lower source/drain contact plug. The upper source/drain contact plug penetrates through the third ILD. The upper source/drain contact plug and the gate contact plug are formed of different materials.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Hsun Wang, Fu-Kai Yang, Mei-Yun Wang, Kuo-Yi Chao