Patents by Inventor Fu-Shou Tsai
Fu-Shou Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20180138125Abstract: A layout structure including a conductive structure is provided. The layout structure includes a dielectric layer formed on a substrate and a conductive structure formed in the dielectric layer. And the conductive structure further includes a barrier layer, a metal layer formed within the barrier layer, and a high resistive layer sandwiched in between the barrier layer and the metal layer.Type: ApplicationFiled: December 26, 2017Publication date: May 17, 2018Inventors: Kun-Ju Li, Kuo-Chin Hung, Min-Chuan Tsai, Wei-Chuan Tsai, Yi-Han Liao, Chun-Tsen Lu, Fu-Shou Tsai, Li-Chieh Hsu
-
Patent number: 9972498Abstract: A method of fabricating a gate cap layer includes providing a substrate with an interlayer dielectric disposed thereon, wherein a recess is disposed in the interlayer dielectric and a metal gate fills in a lower portion of the recess. Later, a cap material layer is formed to cover the interlayer dielectric and fill in an upper portion of the recess. After that, a first sacrifice layer and a second sacrifice layer are formed in sequence to cover the cap material layer. The first sacrifice layer has a composition different from a composition of the cap material layer. The second sacrifice layer has a composition the same as the composition of the cap material layer. Next, a chemical mechanical polishing process is preformed to remove the second sacrifice layer, the first sacrifice layer and the cap material layer above a top surface of the interlayer dielectric.Type: GrantFiled: March 27, 2016Date of Patent: May 15, 2018Assignee: UNITED MICROELECTRONICS CORP.Inventors: Fu-Shou Tsai, Yu-Ting Li, Chih-Hsun Lin, Li-Chieh Hsu, Yi-Liang Liu, Po-Cheng Huang, Kun-Ju Li, Wen-Chin Lin
-
Publication number: 20180076205Abstract: A semiconductor IC structure includes a substrate including at least a memory cell region and a peripheral region defined thereon, a plurality of memory cells formed in the memory cell region, at least an active device formed in the peripheral region, a plurality of contact plugs formed in the memory cell region, and at least a bit line formed in the memory cell region. The contact plugs are physically and electrically connected to the bit line. More important, bottom surfaces of the contact plugs are lower a surface of the substrate.Type: ApplicationFiled: September 9, 2016Publication date: March 15, 2018Inventors: Yu-Ting Li, Jen-Chieh Lin, Wen-Chin Lin, Po-Cheng Huang, Fu-Shou Tsai
-
Publication number: 20180061656Abstract: A method for forming a semiconductor structure includes following steps. A substrate is provided, and a semiconductor layer is formed on the substrate. Next, a SiN-rich pre-oxide layer is formed on the semiconductor layer. After forming the SiN-rich pre-oxide layer, an anneal treatment is performed to partially transfer the SiN-rich pre-oxide layer to form a SiN layer and a SiO layer. And the SiO layer is formed the on the SiN layer. Subsequently, a planarization process is performed to remove a portion of the SiO layer to expose the SiN layer.Type: ApplicationFiled: August 24, 2016Publication date: March 1, 2018Inventors: Fu-Shou Tsai, Yu-Ting Li, Li-Chieh Hsu, Yi-Liang Liu, Kun-Ju Li, Po-Cheng Huang, Chien-Nan Lin
-
Patent number: 9905430Abstract: A method for forming a semiconductor structure includes following steps. A substrate is provided, and a semiconductor layer is formed on the substrate. Next, a SiN-rich pre-oxide layer is formed on the semiconductor layer. After forming the SiN-rich pre-oxide layer, an anneal treatment is performed to partially transfer the SiN-rich pre-oxide layer to form a SiN layer and a SiO layer. And the SiO layer is formed the on the SiN layer. Subsequently, a planarization process is performed to remove a portion of the SiO layer to expose the SiN layer.Type: GrantFiled: August 24, 2016Date of Patent: February 27, 2018Assignee: UNITED MICROELECTRONICS CORP.Inventors: Fu-Shou Tsai, Yu-Ting Li, Li-Chieh Hsu, Yi-Liang Liu, Kun-Ju Li, Po-Cheng Huang, Chien-Nan Lin
-
Patent number: 9887158Abstract: A conductive structure includes a substrate including a first dielectric layer formed thereon, a first trench formed in the first dielectric layer, a first barrier layer formed in the first trench, a first nucleation layer formed on the first barrier layer, a first metal layer formed on the first nucleation layer, and a first high resistive layer sandwiched in between the first barrier layer and the first metal layer.Type: GrantFiled: November 2, 2016Date of Patent: February 6, 2018Assignee: UNITED MICROELECTRONICS CORP.Inventors: Kun-Ju Li, Kuo-Chin Hung, Min-Chuan Tsai, Wei-Chuan Tsai, Yi-Han Liao, Chun-Tsen Lu, Fu-Shou Tsai, Li-Chieh Hsu
-
Publication number: 20180033636Abstract: A method of fabricating a semiconductor structure is provided. A substrate surface is provided and a first layer is disposed on the substrate surface. A second layer covering the first layer is formed wherein the materials of the first layer and the second layer are different. A first polishing operation is performed on the second layer until a first polished surface exposing a portion of the first layer is obtained. A second polishing operation is performed on the first polished surface to obtain a second polished surface wherein an upper portion of the exposed portion of the first layer is removed. None of the substrate is exposed from the first polished surface and the second polished surface.Type: ApplicationFiled: July 27, 2016Publication date: February 1, 2018Inventors: Li-Chieh Hsu, Fu-Shou Tsai, Yu-Ting Li, Po-Cheng Huang, Yi-Liang Liu, Wen-Chin Lin, Chun-Yi Wang, Chun-Yuan Wu
-
Publication number: 20180033633Abstract: A method for planarizing a silicon layer includes providing a silicon layer having at least one recess therein. Next, a photoresist layer is formed to cover the silicon layer and fill up the recess. Then, the photoresist layer is hardened. After that, part of the photoresist layer is removed by taking a top surface of the silicon layer as a stop layer. Finally the photoresist layer and the silicon layer are etched back simultaneously to remove the photoresist layer entirely.Type: ApplicationFiled: July 26, 2016Publication date: February 1, 2018Inventors: Fu-Shou Tsai, Yu-Ting Li, Li-Chieh Hsu, Yi-Liang Liu, Kun-Ju Li, Po-Cheng Huang, Chien-Nan Lin
-
Patent number: 9875909Abstract: A method for planarizing a silicon layer includes providing a silicon layer having at least one recess therein. Next, a photoresist layer is formed to cover the silicon layer and fill up the recess. Then, the photoresist layer is hardened. After that, part of the photoresist layer is removed by taking a top surface of the silicon layer as a stop layer. Finally the photoresist layer and the silicon layer are etched back simultaneously to remove the photoresist layer entirely.Type: GrantFiled: July 26, 2016Date of Patent: January 23, 2018Assignee: UNITED MICROELECTRONICS CORP.Inventors: Fu-Shou Tsai, Yu-Ting Li, Li-Chieh Hsu, Yi-Liang Liu, Kun-Ju Li, Po-Cheng Huang, Chien-Nan Lin
-
Publication number: 20180012772Abstract: A method of planarizing a substrate surface is disclosed. A substrate having a major surface of a material layer is provided. The major surface of the material layer comprises a first region with relatively low removal rate and a second region of relatively high removal rate. A photoresist pattern is formed on the material layer. The photoresist pattern masks the second region, while exposes at least a portion of the first region. At least a portion of the material layer not covered by the photoresist pattern is etched away. A polish stop layer is deposited on the material layer. A cap layer is deposited on the polish stop layer. A chemical mechanical polishing (CMP) process is performed to polish the cap layer.Type: ApplicationFiled: August 16, 2017Publication date: January 11, 2018Inventors: Li-Chieh Hsu, Fu-Shou Tsai, Yu-Ting Li, Yi-Liang Liu, Kun-Ju Li
-
Publication number: 20180012771Abstract: A method of planarizing a substrate surface is disclosed. A substrate having a major surface of a material layer is provided. The major surface of the material layer comprises a first region with relatively low removal rate and a second region of relatively high removal rate. A photoresist pattern is formed on the material layer. The photoresist pattern masks the second region, while exposes at least a portion of the first region. At least a portion of the material layer not covered by the photoresist pattern is etched away. A polish stop layer is deposited on the material layer. A cap layer is deposited on the polish stop layer. A chemical mechanical polishing (CMP) process is performed to polish the cap layer.Type: ApplicationFiled: August 16, 2017Publication date: January 11, 2018Inventors: Li-Chieh Hsu, Fu-Shou Tsai, Yu-Ting Li, Yi-Liang Liu, Kun-Ju Li
-
Patent number: 9773682Abstract: A method of planarizing a substrate surface is disclosed. A substrate having a major surface of a material layer is provided. The major surface of the material layer comprises a first region with relatively low removal rate and a second region of relatively high removal rate. A photoresist pattern is formed on the material layer. The photoresist pattern masks the second region, while exposes at least a portion of the first region. At least a portion of the material layer not covered by the photoresist pattern is etched away. A polish stop layer is deposited on the material layer. A cap layer is deposited on the polish stop layer. A chemical mechanical polishing (CMP) process is performed to polish the cap layer.Type: GrantFiled: July 5, 2016Date of Patent: September 26, 2017Assignee: UNITED MICROELECTRONICS CORP.Inventors: Li-Chieh Hsu, Fu-Shou Tsai, Yu-Ting Li, Yi-Liang Liu, Kun-Ju Li
-
Publication number: 20170162396Abstract: A method of fabricating a gate cap layer includes providing a substrate with an interlayer dielectric disposed thereon, wherein a recess is disposed in the interlayer dielectric and a metal gate fills in a lower portion of the recess. Later, a cap material layer is formed to cover the interlayer dielectric and fill in an upper portion of the recess. After that, a first sacrifice layer and a second sacrifice layer are formed in sequence to cover the cap material layer. The first sacrifice layer has a composition different from a composition of the cap material layer. The second sacrifice layer has a composition the same as the composition of the cap material layer. Next, a chemical mechanical polishing process is preformed to remove the second sacrifice layer, the first sacrifice layer and the cap material layer above a top surface of the interlayer dielectric.Type: ApplicationFiled: March 27, 2016Publication date: June 8, 2017Inventors: Fu-Shou Tsai, Yu-Ting Li, Chih-Hsun Lin, Li-Chieh Hsu, Yi-Liang Liu, Po-Cheng Huang, Kun-Ju Li, Wen-Chin Lin
-
Publication number: 20170162402Abstract: A method of manufacturing a semiconductor structure is provided. First, a preliminary structure is provided. The preliminary structure has a first region and a second region, and the preliminary structure comprises a plurality of features in the first region. Then, a first polish stop layer is formed on the preliminary structure. The first polish stop layer comprises a concave portion in the second region, and the concave portion defines an opening. A first overlying layer is formed on the first polish stop layer. Thereafter, a second polish stop layer is formed on the first overlying layer. The second polish stop layer has a graduated change in composition. The second polish stop layer comprises a concave portion at least partially formed in the opening. A second overlying layer is formed on the second polish stop layer.Type: ApplicationFiled: December 7, 2015Publication date: June 8, 2017Inventors: Fu-Shou Tsai, Yu-Ting Li, Li-Chieh Hsu, Kun-Ju Li, Chih-Hsun Lin, Po-Cheng Huang, Yi-Liang Liu, Wen-Chin Lin
-
Patent number: 9673053Abstract: A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a first material layer on the substrate; forming a stop layer on the first material layer; forming a second material layer on the stop layer; and performing a planarizing process to remove the second material layer, the stop layer, and part of the first material layer for forming a gate layer.Type: GrantFiled: November 20, 2014Date of Patent: June 6, 2017Assignee: UNITED MICROELECTRONICS CORP.Inventors: Rung-Yuan Lee, Yu-Ting Li, Jing-Yin Jhang, Chen-Yi Weng, Jia-Feng Fang, Yi-Wei Chen, Wei-Jen Wu, Po-Cheng Huang, Fu-Shou Tsai, Kun-Ju Li, Wen-Chin Lin, Chih-Chien Liu, Chih-Hsun Lin, Chun-Yuan Wu
-
Patent number: 9502303Abstract: A method for manufacturing a semiconductor device is provided. A substrate with an insulation formed thereon is provided, wherein the insulation has plural trenches, and the adjacent trenches are spaced apart from each other. A barrier layer is formed on an upper surface of the insulation and in sidewalls of the trenches, and the barrier layer comprises overhung portions corresponding to the trenches. A seed layer is formed on the barrier layer. Then, an upper portion of the seed layer formed on an upper surface of the barrier layer is removed. An upper portion of the barrier layer is removed for exposing the upper surface of the insulation. Afterwards, the conductors are deposited along the seed layer for filling up the trenches, wherein the top surfaces of the conductors are substantially aligned with the upper surface of the insulation.Type: GrantFiled: April 9, 2015Date of Patent: November 22, 2016Assignee: UNITED MICROELECTRONICS CORP.Inventors: Kun-Ju Li, Kuo-Chin Hung, Po-Cheng Huang, Yu-Ting Li, Wu-Sian Sie, Chun-Tsen Lu, Wen-Chin Lin, Fu-Shou Tsai
-
Publication number: 20160300765Abstract: A method for manufacturing a semiconductor device is provided. A substrate with an insulation formed thereon is provided, wherein the insulation has plural trenches, and the adjacent trenches are spaced apart from each other. A barrier layer is formed on an upper surface of the insulation and in sidewalls of the trenches, and the barrier layer comprises overhung portions corresponding to the trenches. A seed layer is formed on the barrier layer. Then, an upper portion of the seed layer formed on an upper surface of the barrier layer is removed. An upper portion of the barrier layer is removed for exposing the upper surface of the insulation. Afterwards, the conductors are deposited along the seed layer for filling up the trenches, wherein the top surfaces of the conductors are substantially aligned with the upper surface of the insulation.Type: ApplicationFiled: April 9, 2015Publication date: October 13, 2016Inventors: Kun-Ju Li, Kuo-Chin Hung, Po-Cheng Huang, Yu-Ting Li, Wu-Sian Sie, Chun-Tsen Lu, Wen-Chin Lin, Fu-Shou Tsai
-
Patent number: 9466484Abstract: A manufacturing method of a semiconductor device is provided. The manufacturing method includes the following steps. A plurality of fin structures are formed in a first area and a second area of a substrate. A first density of the fin structures in the first area is lower than a second density of the fin structures in the second area. A gate dielectric layer is formed on the fin structures. An amorphous silicon layer is formed on the gate dielectric layer and the fin structures in the first area and the second area. Part of the amorphous silicon layer which is disposed in the first area is annealed to form a crystalline silicon layer by a laser. The crystalline silicon layer disposed in the first area and the amorphous silicon layer disposed in the second area are polished.Type: GrantFiled: September 21, 2015Date of Patent: October 11, 2016Assignee: UNITED MICROELECTRONICS CORP.Inventors: Kun-Ju Li, Yu-Ting Li, Po-Cheng Huang, Fu-Shou Tsai, Wu-Sian Sie, I-Lun Hung, Chun-Tsen Lu, Shih-Ming Lin, Lan-Ping Chang
-
Publication number: 20160148816Abstract: A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a first material layer on the substrate; forming a stop layer on the first material layer; forming a second material layer on the stop layer; and performing a planarizing process to remove the second material layer, the stop layer, and part of the first material layer for forming a gate layer.Type: ApplicationFiled: November 20, 2014Publication date: May 26, 2016Inventors: Rung-Yuan Lee, Yu-Ting Li, Jing-Yin Jhang, Chen-Yi Weng, Jia-Feng Fang, Yi-Wei Chen, Wei-Jen Wu, Po-Cheng Huang, Fu-Shou Tsai, Kun-Ju Li, Wen-Chin Lin, Chih-Chien Liu, Chih-Hsun Lin, Chun-Yuan Wu