Patents by Inventor Fu-Yu Chu

Fu-Yu Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160247914
    Abstract: Power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) and methods of forming the same are provided. A power MOSFET may comprise a first drift region formed at a side of a gate electrode, and a second drift region beneath the gate electrode, adjacent to the first drift region, with a depth less than a depth of the first drift region so that the first drift region and the second drift region together form a stepwise shape. A sum of a depth of the second drift region, a depth of the gate dielectric, and a depth of the gate electrode may be of substantially a same value as a depth of the first drift region. The first drift region and the second drift region may be formed at the same time, using the gate electrode as a part of the implanting mask.
    Type: Application
    Filed: May 5, 2016
    Publication date: August 25, 2016
    Inventors: Fu-Yu Chu, Chih-Chang Cheng, Tung-Yang Lin, Ruey-Hsin Liu
  • Patent number: 9391159
    Abstract: A triple well isolate diode including a substrate having a first conductivity type and a buried layer formed in the substrate, where the buried layer has a second conductivity type. The triple well isolated diode including an epi-layer formed over the substrate and the buried layer, where the epi-layer has the first conductivity type. The triple well isolated diode including a first well formed in the epi-layer, where the first well has the second conductivity type, a second well formed in the epi-layer, where the second well has the first conductivity type and surrounds the first well, a third well formed in the epi-layer, where the third well has the second conductivity type and surrounds the second well. The triple well isolated diode including a deep well formed in the epi-layer, where the deep well has the first conductivity type and extends beneath the first well.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: July 12, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ruey-Hsin Liu
  • Patent number: 9356139
    Abstract: Power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) and methods of forming the same are provided. A power MOSFET may comprise a first drift region formed at a side of a gate electrode, and a second drift region beneath the gate electrode, adjacent to the first drift region, with a depth less than a depth of the first drift region so that the first drift region and the second drift region together form a stepwise shape. A sum of a depth of the second drift region, a depth of the gate dielectric, and a depth of the gate electrode may be of substantially a same value as a depth of the first drift region. The first drift region and the second drift region may be formed at the same time, using the gate electrode as a part of the implanting mask.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: May 31, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fu-Yu Chu, Chih-Chang Cheng, Tung-Yang Lin, Ruey-Hsin Liu
  • Publication number: 20160020321
    Abstract: A method of forming a manufacture includes forming a trench in a doped layer; and forming a gate dielectric layer along sidewalls of an upper portion of the trench. The method further includes forming a first conductive feature along sidewalls of the gate dielectric layer, wherein the first conductive feature has a first depth in the trench. The method further includes forming an insulating layer covering the first conductive feature and the first insulating layer. The method further includes forming a second conductive feature along sidewalls of the second insulating layer, wherein the second conductive feature has a second depth in the trench different from the first depth.
    Type: Application
    Filed: September 29, 2015
    Publication date: January 21, 2016
    Inventors: Chih-Chang CHENG, Fu-Yu CHU, Ruey-Hsin LIU
  • Patent number: 9159827
    Abstract: A method of forming a manufacture includes forming a trench in a doped layer. The trench has an upper portion and a lower portion, and a width of the upper portion is greater than that of the lower portion. A first insulating layer is formed along sidewalls of the lower portion of the trench and a bottom surface of the trench. A gate dielectric layer is formed along sidewalls of the upper portion of the trench. A first conductive feature is formed along sidewalls of the gate dielectric layer. A second insulating layer covering the first conductive feature and the first insulating layer is formed, and a second conductive feature is formed along sidewalls of the second insulating layer and a bottom surface of the second insulating layer.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: October 13, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ruey-Hsin Liu
  • Publication number: 20150162442
    Abstract: Power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) and methods of forming the same are provided. A power MOSFET may comprise a first drift region formed at a side of a gate electrode, and a second drift region beneath the gate electrode, adjacent to the first drift region, with a depth less than a depth of the first drift region so that the first drift region and the second drift region together form a stepwise shape. A sum of a depth of the second drift region, a depth of the gate dielectric, and a depth of the gate electrode may be of substantially a same value as a depth of the first drift region. The first drift region and the second drift region may be formed at the same time, using the gate electrode as a part of the implanting mask.
    Type: Application
    Filed: February 19, 2015
    Publication date: June 11, 2015
    Inventors: Fu-Yu Chu, Chih-Chang Cheng, Tung-Yang Lin, Ruey-Hsin Liu
  • Patent number: 9000517
    Abstract: Power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) and methods of forming the same are provided. A power MOSFET may comprise a first drift region formed at a side of a gate electrode, and a second drift region beneath the gate electrode, adjacent to the first drift region, with a depth less than a depth of the first drift region so that the first drift region and the second drift region together form a stepwise shape. A sum of a depth of the second drift region, a depth of the gate dielectric, and a depth of the gate electrode may be of substantially a same value as a depth of the first drift region. The first drift region and the second drift region may be formed at the same time, using the gate electrode as a part of the implanting mask.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: April 7, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fu-Yu Chu, Chih-Chang Cheng, Tung-Yang Lin, Ruey-Hsin Liu
  • Publication number: 20150069507
    Abstract: A novel MOS transistor, which includes a source region, a drain region, a channel region, an isolation region, a drift region, a gate dielectric layer, a gate electrode and a field plate, is provided. The gate electrode has a first portion and a second portion. The first portion of a first conductivity type is located over the channel region and has a width equal to or greater than a distance of the gate electrode overlapped with the channel region. The second portion is un-doped and located over the isolation region. Accordingly, the MOS transistor allows higher process freedom saves production cost, as well as improves reliability.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 12, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Chang CHENG, Fu-Yu CHU, Ruey-Hsin LIU
  • Publication number: 20150061011
    Abstract: A novel MOS transistor including a well region, a gate dielectric layer, a gate electrode, a source region and a drain region is provided. The well region of a first conductivity type extends into a semiconductor substrate. The gate dielectric layer is located over the well region. The gate electrode is located over the gate dielectric layer. The source region of a second conductivity type opposite to the first conductivity type and a drain region of the second conductivity type are located in the well region and on opposite sides of the gate electrode. The gate dielectric layer has a first portion and a second portion respectively closest to the source region and the drain region. The thickness of the second portion is greater than that of the first portion, so as to raise breakdown voltage and to maintain current simultaneously.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Inventors: Chih-Chang CHENG, Fu-Yu CHU, Ruey-Hsin LIU
  • Publication number: 20150001636
    Abstract: A metal-oxide-semiconductor field effect transistor (MOSFET) includes a substrate and a gate structure over a top surface of the substrate. The MOSFET further includes a source in the substrate on a first side of the gate structure and a drain in the substrate on a second side of the gate structure opposite the first side. A surface portion of the substrate extending from the source to the drain has an asymmetric dopant concentration profile.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Chih-Chang CHENG, Fu-Yu CHU, Ruey-Hsin LIU
  • Publication number: 20150001637
    Abstract: A metal-oxide-semiconductor field effect transistor (MOSFET) includes a substrate and a gate structure over a top surface of the substrate. The MOSFET further includes a source in the substrate on a first side of the gate structure and a drain in the substrate on a second side of the gate structure opposite the first side. The gate structure includes a variable thickness gate dielectric layer. The variable thickness gate dielectric layer includes a first portion closest to the drain, the first portion having a first thickness. The variable thickness gate dielectric layer further includes a second portion distal from the drain, the second portion having a second thickness less than the first thickness.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 1, 2015
    Inventors: Chih-Chang CHENG, Fu-Yu CHU, Ruey-Hsin LIU
  • Publication number: 20140312414
    Abstract: A method of forming a manufacture includes forming a trench in a doped layer. The trench has an upper portion and a lower portion, and a width of the upper portion is greater than that of the lower portion. A first insulating layer is formed along sidewalls of the lower portion of the trench and a bottom surface of the trench. A gate dielectric layer is formed along sidewalls of the upper portion of the trench. A first conductive feature is formed along sidewalls of the gate dielectric layer. A second insulating layer covering the first conductive feature and the first insulating layer is formed, and a second conductive feature is formed along sidewalls of the second insulating layer and a bottom surface of the second insulating layer.
    Type: Application
    Filed: July 2, 2014
    Publication date: October 23, 2014
    Inventors: Chih-Chang CHENG, Fu-Yu CHU, Ruey-Hsin LIU
  • Patent number: 8796760
    Abstract: A manufacture includes a doped layer, a body structure over the doped layer, a trench defined in the doped layer, an insulator partially filling the trench, and a first conductive feature buried in, and separated from the doped layer and the body structure by, the insulator. The doped layer has a first type doping. The body structure has an upper surface and includes a body region. The body region has a second type doping different from the first type doping. The trench has a bottom surface. The first conductive feature extends from a position substantially leveled with the upper surface of the body structure toward the bottom surface of the trench. The first conductive feature overlaps the doped layer for an overlapping distance, and the overlapping distance ranging from 0 to 2 ?m.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: August 5, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ruey-Hsin Liu
  • Publication number: 20140197489
    Abstract: Power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) and methods of forming the same are provided. A power MOSFET may comprise a first drift region formed at a side of a gate electrode, and a second drift region beneath the gate electrode, adjacent to the first drift region, with a depth less than a depth of the first drift region so that the first drift region and the second drift region together form a stepwise shape. A sum of a depth of the second drift region, a depth of the gate dielectric, and a depth of the gate electrode may be of substantially a same value as a depth of the first drift region. The first drift region and the second drift region may be formed at the same time, using the gate electrode as a part of the implanting mask.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 17, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Fu-Yu Chu, Chih-Chang Cheng, Tung-Yang Lin, Ruey-Hsin Liu
  • Patent number: 8664718
    Abstract: A power MOSFET includes a semiconductor region extending from a top surface of a semiconductor substrate into the semiconductor substrate, wherein the semiconductor region is of a first conductivity type. A gate dielectric and a gate electrode are disposed over the semiconductor region. A drift region of a second conductivity type opposite the first conductivity type extends from the top surface of the semiconductor substrate into the semiconductor substrate. A dielectric layer has a portion over and in contact with a top surface of the drift region. A conductive field plate is over the dielectric layer. A source region and a drain region are on opposite sides of the gate electrode. The drain region is in contact with the first drift region. A bottom metal layer is over the field plate.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: March 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ruey-Hsin Liu, Hsiao-Chin Tuan
  • Publication number: 20130256833
    Abstract: A triple well isolate diode including a substrate having a first conductivity type and a buried layer formed in the substrate, where the buried layer has a second conductivity type. The triple well isolated diode including an epi-layer formed over the substrate and the buried layer, where the epi-layer has the first conductivity type. The triple well isolated diode including a first well formed in the epi-layer, where the first well has the second conductivity type, a second well formed in the epi-layer, where the second well has the first conductivity type and surrounds the first well, a third well formed in the epi-layer, where the third well has the second conductivity type and surrounds the second well. The triple well isolated diode including a deep well formed in the epi-layer, where the deep well has the first conductivity type and extends beneath the first well.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 3, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Chang CHENG, Fu-Yu CHU, Ruey-Hsin LIU
  • Publication number: 20130240984
    Abstract: A manufacture includes a doped layer, a body structure over the doped layer, a trench defined in the doped layer, an insulator partially filling the trench, and a first conductive feature buried in, and separated from the doped layer and the body structure by, the insulator. The doped layer has a first type doping. The body structure has an upper surface and includes a body region. The body region has a second type doping different from the first type doping. The trench has a bottom surface. The first conductive feature extends from a position substantially leveled with the upper surface of the body structure toward the bottom surface of the trench. The first conductive feature overlaps the doped layer for an overlapping distance, and the overlapping distance ranging from 0 to 2 ?m.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Chang CHENG, Fu-Yu CHU, Ruey-Hsin LIU
  • Publication number: 20130134512
    Abstract: A power MOSFET includes a semiconductor region extending from a top surface of a semiconductor substrate into the semiconductor substrate, wherein the semiconductor region is of a first conductivity type. A gate dielectric and a gate electrode are disposed over the semiconductor region. A drift region of a second conductivity type opposite the first conductivity type extends from the top surface of the semiconductor substrate into the semiconductor substrate. A dielectric layer has a portion over and in contact with a top surface of the drift region. A conductive field plate is over the dielectric layer. A source region and a drain region are on opposite sides of the gate electrode. The drain region is in contact with the first drift region.
    Type: Application
    Filed: January 11, 2012
    Publication date: May 30, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ruey-Hsin Liu, Hsiao-Chin Tuan