Patents by Inventor Fujian Qu

Fujian Qu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11564632
    Abstract: Computer implemented methods and systems for detecting noise in cardiac activity are provided. The method and system obtain a far field cardiac activity (CA) data set that includes far field CA signals for a series of beats, overlay a segment of the CA signals with a noise search window, and identify turns in the segment of the CA signals. The method and system determine whether the turns exhibit a turn characteristic that exceed a turn characteristic threshold, declare the segment of the CA signals as a noise segment based on the determining operation, shift the noise search window to a next segment of the CA signal and repeat the identifying, determining and declaring operations; and modify the CA signals based on the declaring the noise segments.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: January 31, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Jong Gill, Fujian Qu, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Patent number: 11559242
    Abstract: Described herein are methods, devices, and systems that monitor heart rate and/or for arrhythmic episodes based on sensed intervals that can include true R-R intervals as well as over-sensed R-R intervals. True R-R intervals are initially identified from an ordered list of the sensed intervals by comparing individual sensed intervals to a sum of an immediately preceding two intervals, and/or an immediately following two intervals. True R-R intervals are also identified by comparing sensed intervals to a mean or median of durations of sensed intervals already identified as true R-R intervals. Individual intervals in a remaining ordered list of sensed intervals (from which true R-R intervals have been removed) are classified as either a short interval or a long interval, and over-sensed R-R intervals are identified based on the results thereof. Such embodiments can be used, e.g., to reduce the reporting of and/or inappropriate responses to false positive tachycardia detections.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: January 24, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Nima Badie, Fujian Qu, Jong Gill
  • Patent number: 11559241
    Abstract: Computer implemented methods and systems are provided that comprise, under control of one or more processors of a medical device, where the one or more processors are configured with specific executable instructions. The methods and systems obtain motion data indicative of at least one of a posture or a respiration cycle; obtain cardiac activity (CA) signals for a series of beats; identify whether a characteristic of interest (COI) from at least a first segment of the CA signals exceeds a COI limit; analyze the motion data to determine whether at least one of the posture or respiration cycle at least in part caused the COI to exceed the COI limit. Based on the analyzing operation, the methods and systems automatically adjust a CA sensing parameter utilized by the medical device to detect R-waves in subsequent CA signals; and detect an arrhythmia based on a presence or absence of one or more of the R-waves in at least a second segment of the CA signals.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: January 24, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Donald Hopper, Luke C. McSpadden, Fujian Qu, Gene Bornzin, Sinny Delacroix
  • Patent number: 11547339
    Abstract: A computer implemented method and system for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains far field cardiac activity (CA) signals and applies a direction related responsiveness (DRR) filter to the CA signals to produce DRR filtered signals. The method compares a current sample from the CA signals to a prior sample from the DRR filtered signals to identify a direction characteristic of the CA signals and defines the DRR filter based on a timing constant that is set based on the direction characteristic identified. The method analyzes the CA signals in connection with the DRR filtered signals to identify a peak characteristic of the CA signals and determines peak to peak intervals between successive peak characteristic. The method detects at least one of noise or an arrhythmia based on the peak to peak intervals and records results of the detecting.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: January 10, 2023
    Assignee: PACESETTER, INC.
    Inventors: Gene A. Bornzin, Fady Dawoud, Jong Gill, Stuart Rosenberg, Fujian Qu, Neha Malhotra
  • Patent number: 11534101
    Abstract: A computer implemented method and system are provided for detecting premature ventricular contractions (PVCs) in cardiac activity. The method and system obtain cardiac activity (CA) signals for a series of beats, and, for at least a portion of the series of beats, calculate QRS scores for corresponding QRS complex segments from the CA signals. The method and system calculate a variability metric for QRS scores across the series of beats, calculate a QRS complex template using QRS segments from the series of beats, calculate correlation coefficients between the QRS complex template and the QRS complex segments, compare the variability metric to a variability threshold and the correlation coefficients to a correlation threshold, and designate the CA signals to include a predetermined level of PVC burden based on the determining.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: December 27, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Jong Gill, Fujian Qu, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20220401036
    Abstract: Described herein are methods, devices and system for determining whether an R-wave detection should be classified as a false R-wave detection due to T-wave oversensing (TWO) or P-wave oversensing (PWO). One such method includes comparing a specific morphological characteristic (e.g., peak amplitude) associated with the R-wave detection to the specific morphological characteristic associated with each R-wave detection in a first set of earlier detected R-wave detections to thereby determine whether first TWO or PWO morphological criteria are met, and in a second set of earlier detected R-wave detections to thereby determine whether second TWO or PWO morphological criteria are met, wherein the second set differs from the first set but may have some overlap with the first set. The method also includes determining whether to classify the R-wave detection as a false R-wave detection, based on whether one of the first or second TWO or PWO morphological criteria are met.
    Type: Application
    Filed: April 18, 2022
    Publication date: December 22, 2022
    Applicant: Pacesetter, Inc.
    Inventors: Nima Badie, Wenwen Li, Fujian Qu, Jong Gill
  • Patent number: 11517268
    Abstract: A computer implemented method and system for detecting premature ventricular contractions (PVCs) are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains a cycle length (CL) distribution metric that plots a series of cardiac beats into one of a set of transition types based on R-R interval (RRI) difference pairs associated with the cardiac beats. The CL distribution metric plots the cardiac beats based on a comparison between combinations of the RRI difference pairs for corresponding combinations of the cardiac beats. The method calculates a distribution characteristic for the cardiac beats, from the series of cardiac beats that exhibit a first transition type from the set of transition types and calculates a discrimination score based on the distribution characteristic of the cardiac beats across the CL distribution metric.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: December 6, 2022
    Assignee: PACESETTER, INC.
    Inventors: Yun Qiao, Fujian Qu, Stuart Rosenbeg
  • Publication number: 20220354427
    Abstract: Embodiments described herein can reduce a burden associated with analyzing EGM segments obtained from an IMD that monitors for arrhythmic episodes. Respective EGM data and respective classification data is obtained for each arrhythmic episode detected by the IMD during a period of time. A representative R-R interval or HR for each of the arrhythmic episodes is also obtained, wherein a manner for determining the representative R-R interval or HR depends on the type of the arrhythmic episode, such that for at least two different types of arrhythmic episodes the manners differ. One or more arrhythmic episodes is/are selected for which corresponding EGM segments are to be displayed for each type of arrhythmic episode, wherein the selecting is performed based on the representative R-R intervals or HRs that are determined for the plurality of arrhythmic episodes. Additional and alternative embodiments are also described herein.
    Type: Application
    Filed: May 6, 2022
    Publication date: November 10, 2022
    Applicant: Pacesetter, Inc.
    Inventors: Nima Badie, Fujian Qu, Leyla Sabet, Fady Dawoud, Kevin Davis, Christopher Gloschat, Aditya Goil, Mostafa Sadeghi
  • Patent number: 11426081
    Abstract: An apparatus and method for characterizing a region of interest (ROI) including measuring position and orientation data within the ROI; and generating a geometric data set to include one or more of: length, bifurcation location, angle and curvature characteristics of the ROI. Also, sequentially taking an image of a tool within the ROI; comparing tool dimensions with ROI dimensions; and estimating diameter, length, take-off angle, and/or tortuosity characteristics based on the comparisons.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: August 30, 2022
    Assignee: PACESETTER, INC.
    Inventors: Kwangdeok Lee, Edward Karst, Michael E. Benser, Rohan More, Craig Hewitt, Stuart Rosenberg, Fujian Qu, Hoda Razavi
  • Patent number: 11426112
    Abstract: A computer implemented method and system for confirming a device documented arrhythmia in cardiac activity are provided. The method is under control of one or more processors configured with executable instructions. The method obtains a cardiac activity (CA) data set that includes CA signals for a series of cardiac events and includes device documented (DD) markers within the series of cardiac events. The device documented markers are indicative of atrial fibrillation (AF) detected by the ICM utilizing an on-board R-R interval irregularity (ORI) process to analyze the CA signals. The method applies a feature enhancement function to the CA signals to form modified CA signals with enhanced sinus features and analyzes the enhanced sinus features in the modified CA signals. The method utilized a confirmatory feature detection process to identify false AF detection by the ORI process. The method records a result of the analysis identifying false AF detection by the ORI process.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: August 30, 2022
    Assignee: PACESETTER, INC.
    Inventors: Fujian Qu, Jong Gill, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20220240830
    Abstract: A system is provided that includes one or more processors, and a memory coupled to the one or more processors. The memory stores program instructions, and the program instructions are executable by the one or more processors. When executed, the one or more processors obtain cardiac activity (CA) signals for a series of beats, and identify whether a characteristic of interest (COI) from a first segment of the CA signals exceeds a COI limit. The one or more processors also analyze morphology of the CA signals for the series of beats responsive to the first segment of the CA signals exceeding the COI limit, and based on the analyze operation, identify a premature ventricular contraction (PVC) within the series of beats.
    Type: Application
    Filed: January 26, 2022
    Publication date: August 4, 2022
    Inventors: Yun Qiao, Fujian Qu
  • Publication number: 20220167906
    Abstract: A computer implemented method for detecting arrhythmias in cardiac activity including obtaining far field cardiac activity (CA) signals for a series of beats. For at least a portion of the beats, the one or more processors perform, on a beat by beat basis: a) identifying first and second feature of interests (FOI) from a segment of the CA signal that corresponds to a current beat; and b) classifying the current beat into one of first and second groups. The method also includes designating one of the first and second groups to be a primary group based on a relation between the first and second groups, and for the beats in the primary group, selecting one of the first and second FOIs as the R-wave FOI. The method also includes rejecting an arrhythmia detection based on the P-waves detected.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 2, 2022
    Inventors: Fujian Qu, Nima Badie, Jong Gill
  • Publication number: 20220167903
    Abstract: Methods and systems are provided for managing presentation of cardiac activity signals. The methods and systems obtain device classified (DC) data sets generated by an implantable medical device (IMD), the DC data sets including a corresponding cardiac activity (CA) segment from an episode identified by the IMD; compare the CA segments, associated with different episodes, to one another to identify a level of similarity therebetween; separate the CA segments into at least first and second clusters based on the level of similarity; designate a first representative CA segment from the first cluster to be representative of the CA segments in the first cluster; and designate a second representative CA segment from the second cluster to be representative of the CA segments in the second cluster; and a display to present the first and second representative CA segments as representative of the first and second clusters.
    Type: Application
    Filed: August 11, 2021
    Publication date: June 2, 2022
    Inventors: Kevin J. Davis, Fujian Qu, Nima Badie, Fady Dawoud, Leyla Sabet
  • Patent number: 11331498
    Abstract: Computer implemented methods and systems are provided for automatically determining capture thresholds for an implantable medical device equipped for cardiac stimulus pacing using a multi-pole left ventricular (LV) lead. The methods and systems measures a base capture threshold for a base pacing vector utilizing stimulation pulses varied over at least a portion of an outer test range. The base pacing vector is defined by a first LV electrode provided on the LV lead and a second electrode located remote from an LV chamber. The methods and systems designate a secondary pacing vector that includes the first LV electrode and a neighbor LV electrode provided on the LV lead. The methods and systems further define an inner test range having secondary limits based on the base capture threshold, wherein at least one of the limits for the inner test range differs from a corresponding limit for the outer test range.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: May 17, 2022
    Assignee: PACESETTER, INC.
    Inventors: Luke McSpadden, Fujian Qu, Cyrille S. Casset, Chunlan Jiang, Kyungmoo Ryu, Caroline D. Jordan, Yelena Nabutovsky, Nima Badie
  • Publication number: 20220117538
    Abstract: A system and method for declaring arrhythmias in cardiac activity are provided. The system includes memory to store specific executable instructions and a machine learning (ML) model. One or more processors are configured to execute the specific executable instructions to obtain device classified arrhythmia (DCA) data sets generated by an implantable medical device (IMD) for corresponding candidate arrhythmias episodes declared by the IMD. The DCA data sets include cardiac activity (CA) signals for one or more beats sensed by the IMD and one or more device documented (DD) markers that are generated by the IMD. The system applies the ML model to the DCA data sets to identify a valid sub-set of the DCA data sets that correctly characterize the corresponding CA signals and to identify an invalid sub-set of the DCA data sets that incorrectly characterize the corresponding CA signals.
    Type: Application
    Filed: June 8, 2021
    Publication date: April 21, 2022
    Inventors: Kevin J. Davis, Fujian Qu, Fady Dawoud
  • Publication number: 20220104774
    Abstract: Embodiments disclosed herein use multiple AF discriminators to determine whether to classify an AF detection as a false positive. One method includes detecting R-waves within an EGM or ECG signal, determining R?R intervals based on the R-waves, detecting AF based on the R?R intervals, and using one or more time-based AF discriminators to analyze one or more temporal features of the EGM or ECG signal within a window leading up to the AF detection to thereby determine whether to classify the AF detection as a false positive. In response to not classifying the AF detection as a false positive using the one or more time-based AF discriminators, one or more morphology-based AF discriminators are used to analyze one or more morphological features of the EGM or ECG signal within the window leading up to the AF detection to thereby determine whether to classify the AF detection as a false positive.
    Type: Application
    Filed: August 20, 2021
    Publication date: April 7, 2022
    Applicant: Pacesetter, Inc.
    Inventors: Fujian Qu, Nima Badie, Jong Gill
  • Patent number: 11284828
    Abstract: A computer implemented method for detecting arrhythmias in cardiac activity including obtaining far field cardiac activity (CA) signals for a series of beats. For at least a portion of the beats, the one or more processors perform, on a beat by beat basis: a) identifying first and second feature of interests (FOI) from a segment of the CA signal that corresponds to a current beat; and b) classifying the current beat into one of first and second groups. The method also includes designating one of the first and second groups to be a primary group based on a relation between the first and second groups, and for the beats in the primary group, selecting one of the first and second FOIs as the R-wave FOI. The method also includes rejecting an arrhythmia detection based on the P-waves detected.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: March 29, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Fujian Qu, Nima Badie, Jong Gill
  • Publication number: 20220088383
    Abstract: A computer implemented method for detecting pocket stability for an implantable cardiac monitor, including under control of one or more processors in the ICM, collecting impedance data over at least one cardiac cycle. The impedance data is processed to separate an impedance waveform that varies over the at least one cardiac cycle in a manner representative of cardiac functionality over the at least one cardiac cycle. A characteristic of interest is analyzed from the impedance waveform over the at least one cardiac cycle. A pocket stability state of the ICM is identified and recorded based on the analyzing operation.
    Type: Application
    Filed: December 2, 2021
    Publication date: March 24, 2022
    Inventors: Jong Gill, Fujian Qu, Stuart Rosenberg
  • Publication number: 20220047177
    Abstract: A computer implemented method for detecting arrhythmias in cardiac activity including obtaining far field cardiac activity (CA) signals for a series of beats. For at least a portion of the beats, the one or more processors perform, on a beat by beat basis: a) identifying first and second feature of interests (FOI) from a segment of the CA signal that corresponds to a current beat; and b) classifying the current beat into one of first and second groups. The method also includes designating one of the first and second groups to be a primary group based on a relation between the first and second groups, and for the beats in the primary group, selecting one of the first and second FOIs as the R-wave FOI. The method also includes rejecting an arrhythmia detection based on the P-waves detected.
    Type: Application
    Filed: August 12, 2020
    Publication date: February 17, 2022
    Inventors: Fujian Qu, Nima Badie, Jong Gill
  • Patent number: 11219767
    Abstract: A computer implemented method for detecting pocket stability for an implantable cardiac monitor, including under control of one or more processors in the ICM, collecting impedance data over at least one cardiac cycle. The impedance data is processed to separate an impedance waveform that varies over the at least one cardiac cycle in a manner representative of cardiac functionality over the at least one cardiac cycle. A characteristic of interest is analyzed from the impedance waveform over the at least one cardiac cycle. A pocket stability state of the ICM is identified and recorded based on the analyzing operation.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: January 11, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Jong Gill, Fujian Qu, Stuart Rosenberg