Patents by Inventor Fujian Qu

Fujian Qu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170361107
    Abstract: Computer implemented methods and systems are provided for automatically determining capture thresholds for an implantable medical device equipped for cardiac stimulus pacing using a multi-pole left ventricular (LV) lead. The methods and systems measures a base capture threshold for a base pacing vector utilizing stimulation pulses varied over at least a portion of an outer test range. The base pacing vector is defined by a first LV electrode provided on the LV lead and a second electrode located remote from an LV chamber. The methods and systems designate a secondary pacing vector that includes the first LV electrode and a neighbor LV electrode provided on the LV lead. The methods and systems further define an inner test range having secondary limits based on the base capture threshold, wherein at least one of the limits for the inner test range differs from a corresponding limit for the outer test range.
    Type: Application
    Filed: March 10, 2016
    Publication date: December 21, 2017
    Inventors: Luke C. McSpadden, Fujian QU, Cyrille S. Casset, Chunlan Jiang, Kyungmoo Ryu, Caroline Jordan, Yelena Nabutovsky, Nima Badie
  • Publication number: 20170366921
    Abstract: Example electronic devices, including but not limited to implantable medical devices, and methods employing dynamic announcing for creation of wireless communication connections are disclosed herein. In an example, an electronic device includes a wireless communication interface to transmit announcement signals for creating a wireless communication connection with the external device. The electronic device also includes a sensor to detect a characteristic of an environment external to the electronic device, and a control circuit including an announcement timing control module to dynamically control timing of the announcement signals based on the detected characteristic.
    Type: Application
    Filed: August 31, 2017
    Publication date: December 21, 2017
    Inventors: Timothy Pflugh, Fujian Qu, Benjamin Coppola, Edward Karst, Lisa P. Weinberg, Xing Pei, Yongjian Wu
  • Publication number: 20170332942
    Abstract: Example electronic devices, including but not limited to implantable medical devices, and methods employing dynamic announcing for creation of wireless communication connections are disclosed herein. In an example, an electronic device includes a wireless communication interface to transmit announcement signals for creating a wireless communication connection with the external device. The electronic device also includes a sensor to detect a characteristic of an environment external to the electronic device, and a control circuit including an announcement timing control module to dynamically control timing of the announcement signals based on the detected characteristic.
    Type: Application
    Filed: June 15, 2016
    Publication date: November 23, 2017
    Inventors: Timothy Pflugh, Fujian Qu, Benjamin Coppola, Edward Karst, Lisa P. Weinberg
  • Patent number: 9814406
    Abstract: Methods and system are provided that identify motion data associated with consistent electrical and mechanical behavior for a region of interest of the heart. The methods and systems acquire electrical cardiac signals indicative of physiologic behavior of at least a portion of the heart over a plurality of cardiac cycles. The methods and systems acquires motion data indicative of mechanical behavior of a motion sensor over the plurality of cardiac cycles to form a motion data collection, the motion data indicative of mechanical behavior of the region of interest when the motion sensor is in contact with the region of interest. The designating ectopic beats within the cardiac cycles may be based on the electrical cardiac signals, the ectopic beats producing electrically inconsistent (EI) data within the motion data collection. The methods and systems identify mechanically inconsistent (MI) data within the motion data collection based on irregular changes in the motion data.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: November 14, 2017
    Assignee: Pacesetter, Inc.
    Inventors: Hoda Razavi, Fujian Qu, Kyungmoo Ryu, Yelena Nabutovsky
  • Patent number: 9713494
    Abstract: A renal denervation system includes an ablation catheter and an inflation balloon. The renal denervation catheter is insertable into a renal artery to perform a renal denervation procedure. The inflation balloon is inflatable within the renal artery, wherein one of a blood pressure condition in the renal artery resulting from operation of the inflation balloon and a performance characteristic of the inflation balloon indicates efficacy of the renal denervation procedure.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: July 25, 2017
    Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventors: Yelena Nabutovsky, Edward Karst, Fujian Qu
  • Patent number: 9675805
    Abstract: Methods, devices and systems are provided for selecting one or more left ventricular multi-electrode pacing site(s). The methods, devices and systems measure arrival times of LV activation events for corresponding LV sensing sites, where the arrival times each correspond to a conduction time from an intrinsic ventricular event or delivery of a pacing pulse until sensing of the corresponding LV activation event. Site-to-site (STS) relative delays are calculated as differences between the arrival times associated with adjacent LV sensing sites. The STS relative delays represent STS arrival delays for corresponding combinations of the adjacent LV sensing sites. An LV electrode combination is identified that is associated with at least one of the STS relative delays that satisfy selection criteria, where the LV electrode combination corresponds to a target tissue region exhibiting a select degree of non-uniformity.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: June 13, 2017
    Assignee: Pacesetter, Inc.
    Inventors: Nima Badie, Fujian Qu, Kyungmoo Ryu, Luke C. McSpadden, Caroline Jordan
  • Patent number: 9561376
    Abstract: The present disclosure provides systems and methods for estimating a change in an intracardiac distance between systole and diastole. A system includes a pacing electrode configured to generate a pacing pulse, a sensing electrode configured to measure an electrical artifact corresponding to the pacing pulse, and a computing device communicatively coupled to the pacing electrode and the sensing electrode, the computing device configured to determine a first amplitude of a first electrical artifact measured at the sensing electrode during systole, determine a second amplitude of a second electrical artifact measured at the sensing electrode during diastole, and calculate a mechanical index based on the first amplitude and the second amplitude, wherein the mechanical index is representative of the change in the intracardiac distance.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: February 7, 2017
    Assignee: Pacesetter, Inc.
    Inventors: Fujian Qu, Hoda Razavi, Yelena Nabutovsky
  • Publication number: 20170021176
    Abstract: Methods, devices and systems are provided for selecting one or more left ventricular multi-electrode pacing site(s). The methods, devices and systems measure arrival times of LV activation events for corresponding LV sensing sites, where the arrival times each correspond to a conduction time from an intrinsic ventricular event or delivery of a pacing pulse until sensing of the corresponding LV activation event. Site-to-site (STS) relative delays are calculated as differences between the arrival times associated with adjacent LV sensing sites. The STS relative delays represent STS arrival delays for corresponding combinations of the adjacent LV sensing sites. An LV electrode combination is identified that is associated with at least one of the STS relative delays that satisfy selection criteria, where the LV electrode combination corresponds to a target tissue region exhibiting a select degree of non-uniformity.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 26, 2017
    Inventors: Nima Badie, Fujian Qu, Kyungmoo Ryu, Luke C. McSpadden, Caroline Jordan
  • Publication number: 20160331451
    Abstract: A renal denervation system includes an ablation catheter and an inflation balloon. The renal denervation catheter is insertable into a renal artery to perform a renal denervation procedure. The inflation balloon is inflatable within the renal artery, wherein one of a blood pressure condition in the renal artery resulting from operation of the inflation balloon and a performance characteristic of the inflation balloon indicates efficacy of the renal denervation procedure.
    Type: Application
    Filed: July 26, 2016
    Publication date: November 17, 2016
    Inventors: Yelena Nabutovsky, Edward Karst, Fujian Qu
  • Patent number: 9462959
    Abstract: In specific embodiments, a method to monitor left atrial pressure and/or intra-thoracic fluid volume of a patient, comprises (a) monitoring posture of the patient using a posture sensor implanted within the patient, and (b) using portions of an impedance signal, obtained using implanted electrodes, to monitor the left atrial pressure and/or intra-thoracic fluid volume of the patient. Each portion of the impedance signal used to monitor the left atrial pressure and/or intra-thoracic fluid volume of the patient corresponds to a period after which the patient has maintained a predetermined posture for at least a predetermined period of time, and during which the patient has remained in the predetermined posture.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: October 11, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Fujian Qu, Steve Koh, Dan E. Gutfinger, Alex Soriano
  • Patent number: 9427283
    Abstract: A renal denervation system includes an ablation catheter and an inflation balloon. The renal denervation catheter is insertable into a renal artery to perform a renal denervation procedure. The inflation balloon is inflatable within the renal artery, wherein one of a blood pressure condition in the renal artery resulting from operation of the inflation balloon and a performance characteristic of the inflation balloon indicates efficacy of the renal denervation procedure.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: August 30, 2016
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Yelena Nabutovsky, Edward Karst, Fujian Qu
  • Publication number: 20160220819
    Abstract: The present disclosure provides systems and methods for estimating a change in an intracardiac distance between systole and diastole. A system includes a pacing electrode configured to generate a pacing pulse, a sensing electrode configured to measure an electrical artifact corresponding to the pacing pulse, and a computing device communicatively coupled to the pacing electrode and the sensing electrode, the computing device configured to determine a first amplitude of a first electrical artifact measured at the sensing electrode during systole, determine a second amplitude of a second electrical artifact measured at the sensing electrode during diastole, and calculate a mechanical index based on the first amplitude and the second amplitude, wherein the mechanical index is representative of the change in the intracardiac distance.
    Type: Application
    Filed: January 29, 2015
    Publication date: August 4, 2016
    Inventors: Fujian Qu, Hoda Razavi, Yelena Nabutovsky
  • Publication number: 20160184010
    Abstract: A renal denervation system includes an ablation catheter and an inflation balloon. The renal denervation catheter is insertable into a renal artery to perform a renal denervation procedure. The inflation balloon is inflatable within the renal artery, wherein one of a blood pressure condition in the renal artery resulting from operation of the inflation balloon and a performance characteristic of the inflation balloon indicates efficacy of the renal denervation procedure.
    Type: Application
    Filed: March 8, 2016
    Publication date: June 30, 2016
    Inventors: Yelena Nabutovsky, Edward Karst, Fujian Qu
  • Publication number: 20160150980
    Abstract: An apparatus and method for characterizing a region of interest (ROI) including measuring position and orientation data within the ROI; and generating a geometric data set to include one or more of: length, bifurcation location, angle and curvature characteristics of the ROI. Also, sequentially taking an image of a tool within the ROI; comparing tool dimensions with ROI dimensions; and estimating diameter, length, take-off angle, and/or tortuosity characteristics based on the comparisons.
    Type: Application
    Filed: February 5, 2016
    Publication date: June 2, 2016
    Inventors: Kwangdeok Lee, Edward Karst, Michael E. Benser, Rohan More, Craig Hewitt, Stuart Rosenberg, Fujian Qu, Hoda Razavi
  • Patent number: 9345550
    Abstract: A method and system for characterizing an accessibility of potential left ventricular stimulus sites in connection with surgical planning for transvenous implant of a cardiac medical lead in or near a heart of a patient are provided. The method and system include obtaining image data representative of a coronary venous system for the heart of the patient to receive the lead. The method and system generate a venous map, based on the image data, representative of venous pathways for the heart of the patient. The method and system analyze the venous map to identify pathway features of interest (PFOI) within at least one select region of the venous pathways. The method and system assign scores to the PFOI based on at least one of predetermined feature-complexity relations or physician-entered complexity updates. The method and system display treatment planning information to a user based on the scores.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: May 24, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Sergio Richter, Philipp Sommer, Edith Arnold, Hoda Razavi, Yelena Nabutovsky, Fujian Qu
  • Patent number: 9314300
    Abstract: A renal denervation system includes an ablation catheter and an inflation balloon. The renal denervation catheter is insertable into a renal artery to perform a renal denervation procedure. The inflation balloon is inflatable within the renal artery, wherein one of a blood pressure condition in the renal artery resulting from operation of the inflation balloon and a performance characteristic of the inflation balloon indicates efficacy of the renal denervation procedure.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: April 19, 2016
    Assignee: ST. JUDE MEDICAL CARDIOLOGY DIVISION, INC.
    Inventors: Yelena Nabutovsky, Edward Karst, Fujian Qu
  • Patent number: 9282916
    Abstract: An apparatus and method for characterizing a region of interest (ROI) including measuring position and orientation data within the ROI; and generating a geometric data set to include one or more of: length, bifurcation location, angle and curvature characteristics of the ROI. Also, sequentially taking an image of a tool within the ROI; comparing tool dimensions with ROI dimensions; and estimating diameter, length, take-off angle, and/or tortuosity characteristics based on the comparisons.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: March 15, 2016
    Assignee: PACESETTER, INC.
    Inventors: Kwangdeok Lee, Edward Karst, Michael E. Benser, Rohan More, Craig A. Hewitt, Stuart Rosenberg, Fujian Qu, Hoda Razavi
  • Publication number: 20160015452
    Abstract: A renal denervation system includes an ablation catheter and an inflation balloon. The renal denervation catheter is insertable into a renal artery to perform a renal denervation procedure. The inflation balloon is inflatable within the renal artery, wherein one of a blood pressure condition in the renal artery resulting from operation of the inflation balloon and a performance characteristic of the inflation balloon indicates efficacy of the renal denervation procedure.
    Type: Application
    Filed: September 29, 2015
    Publication date: January 21, 2016
    Inventors: Yelena Nabutovsky, Edward Karst, Fujian Qu
  • Patent number: 9237936
    Abstract: Patient tissues are imaged using, e.g., a real-time fluoroscopic imaging system, along with a lead system being implanted. Parameters representative of lead placement efficacy—such as capture thresholds, phrenic nerve stimulation thresholds, impedance values or screw-in tip mechanical resistance values—are measured at candidate implant locations. Localization parameters identifying the candidate implant locations are also measured. In one example, a display is generated substantially in real-time showing: images of the tissues of the patient and the lead system being implanted; candidate locations of the electrodes; and parameters representative of lead placement efficacy at the candidate locations. In this manner, the implanting clinician can readily view capture thresholds and other helpful parameters at various candidate locations along with actual real-time images of the tissues of the patient and the lead system being implanted.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: January 19, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Hoda Razavi, Edith Arnold, Fujian Qu, Yelena Nabutovsky
  • Patent number: 9205274
    Abstract: Provided herein are implantable systems, and methods for use therewith, for characterizing a tachycardia and/or selecting treatment for a tachycardia using results of a dominant frequency analysis. One or more electrogram (EGM) signal(s) indicative of cardiac electrical activity are obtained. For at least one of the EGM signal(s) a dominant frequency (DF) analysis is performed, and the results of the DF analysis are used to characterize a tachycardia and/or to select treatment for a tachycardia.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: December 8, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Fujian Qu, Timothy A. Fayram, Michael E. Benser, Taraneh Ghaffari Farazi, Mark Carlson