Patents by Inventor Fumitsugu Fukuyo

Fumitsugu Fukuyo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11733464
    Abstract: A fiber structure includes first and second optical fibers disposed such that end portions thereof butt, a sheet-shaped saturable absorber including a carbon nanotube and disposed between the end portion of the first optical fiber and the end portion of the second optical fiber, and a housing internally accommodating the end portion of the first optical fiber and the end portion of the second optical fiber. A space in the housing including the saturable absorber is airtight.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: August 22, 2023
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Ryota Kakei, Shin Kato, Fumitsugu Fukuyo, Tomoya Nakazawa, Masaru Shimomaki, Shinichi Ohba, Yu Matsushiro
  • Publication number: 20220352026
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 3, 2022
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro FUJII, Fumitsugu FUKUYO, Kenshi FUKUMITSU, Naoki UCHIYAMA
  • Patent number: 11424162
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: August 23, 2022
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Patent number: 11241757
    Abstract: A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam in end parts of an object to be processed is provided.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: February 8, 2022
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhiro Atsumi, Koji Kuno, Masayoshi Kusunoki, Tatsuya Suzuki, Kenshi Fukumitsu, Fumitsugu Fukuyo
  • Publication number: 20210376554
    Abstract: A fiber structure includes first and second optical fibers disposed such that tip portions thereof butt and a sheet-shaped saturable absorber sandwiched between the tip portion of the first optical fiber and the tip portion of the second optical fiber. Each of the tip portions of the first optical fiber and the second optical fiber has a core, a cladding provided around the core, and a ferrule provided around the cladding. The tip portion of the first optical fiber has a protruding shape protruding to a tip side. The saturable absorber has an adhering part at least adhering to the core of the first optical fiber and a non-adhering part present around the adhering part and not adhering to the tip portion of the first optical fiber.
    Type: Application
    Filed: July 11, 2019
    Publication date: December 2, 2021
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Ryota KAKEI, Shin KATO, Masaru SHIMOMAKI, Fumitsugu FUKUYO, Tomoya NAKAZAWA, Yu MATSUSHIRO
  • Publication number: 20210373246
    Abstract: A fiber structure includes first and second optical fibers disposed such that end portions thereof butt, a sheet-shaped saturable absorber including a carbon nanotube and disposed between the end portion of the first optical fiber and the end portion of the second optical fiber, and a housing internally accommodating the end portion of the first optical fiber and the end portion of the second optical fiber. A space in the housing including the saturable absorber is airtight.
    Type: Application
    Filed: July 11, 2019
    Publication date: December 2, 2021
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Ryota KAKEI, Shin KATO, Fumitsugu FUKUYO, Tomoya NAKAZAWA, Masaru SHIMOMAKI, Shinichi OHBA, Yu MATSUSHIRO
  • Publication number: 20210210387
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Application
    Filed: March 16, 2021
    Publication date: July 8, 2021
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro FUJII, Fumitsugu FUKUYO, Kenshi FUKUMITSU, Naoki UCHIYAMA
  • Patent number: 10796959
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein at pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: October 6, 2020
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda
  • Publication number: 20200203225
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 25, 2020
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro FUJII, Fumitsugu FUKUYO, Kenshi FUKUMITSU, Naoki UCHIYAMA
  • Patent number: 10622255
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: April 14, 2020
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Publication number: 20190232422
    Abstract: A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam in end parts of an object to be processed is provided.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 1, 2019
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhiro ATSUMI, Koji KUNO, Masayoshi KUSUNOKI, Tatsuya SUZUKI, Kenshi FUKUMITSU, Fumitsugu FUKUYO
  • Patent number: 10293433
    Abstract: A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam in end parts of an object to be processed is provided.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: May 21, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhiro Atsumi, Koji Kuno, Masayoshi Kusunoki, Tatsuya Suzuki, Kenshi Fukumitsu, Fumitsugu Fukuyo
  • Publication number: 20180350682
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Application
    Filed: July 31, 2018
    Publication date: December 6, 2018
    Inventors: Yoshimaro FUJII, Fumitsugu FUKUYO, Kenshi FUKUMITSU, Naoki UCHIYAMA
  • Patent number: 10068801
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: September 4, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Publication number: 20180068897
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein at pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Application
    Filed: November 9, 2017
    Publication date: March 8, 2018
    Inventors: Fumitsugu FUKUYO, Kenshi FUKUMITSU, Naoki UCHIYAMA, Toshimitsu WAKUDA
  • Patent number: 9852898
    Abstract: A target for ultraviolet light generation comprises a substrate adapted to transmit ultraviolet light therethrough and a light-emitting layer, disposed on the substrate, for generating ultraviolet light in response to an electron beam. The light-emitting layer includes a powdery or granular oxide crystal containing Lu and Si doped with an activator (e.g., Pr:LPS and Pr:LSO crystals).
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: December 26, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshinori Honda, Hiroyuki Taketomi, Fumitsugu Fukuyo, Koji Kawai, Hidetsugu Takaoka, Takashi Suzuki
  • Patent number: 9837315
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: December 5, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda
  • Publication number: 20170271210
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Application
    Filed: June 8, 2017
    Publication date: September 21, 2017
    Inventors: Yoshimaro FUJII, Fumitsugu FUKUYO, Kenshi FUKUMITSU, Naoki UCHIYAMA
  • Patent number: 9728393
    Abstract: A target for ultraviolet light generation comprises a substrate adapted to transmit ultraviolet light therethrough and a light-emitting layer disposed on the substrate and generating ultraviolet light UV in response to an electron beam. The light-emitting layer includes a powdery or granular rare-earth-containing aluminum garnet crystal doped with an activator. The light-emitting layer has an ultraviolet light emission peak wavelength of 300 nm or shorter.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: August 8, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshinori Honda, Hiroyuki Taketomi, Fumitsugu Fukuyo, Koji Kawai, Hidetsugu Takaoka, Takashi Suzuki
  • Patent number: 9711405
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: July 18, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama