Patents by Inventor Gabor Kiss

Gabor Kiss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8747659
    Abstract: A process for hydrotreating a first aromatics- and sulfur-containing hydrocarbon feed using a fresh supported CoMo catalyst, includes treating the fresh catalyst under first hydrotreating conditions with a second hydrocarbon feed having a lower aromatics content than the first feed.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: June 10, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Lulian Nistor, John Zengel
  • Patent number: 8614277
    Abstract: Isotactic polypropylene ethylene-propylene copolymer blends and in-line processes for producing. The blends may have between 1 and 50 wt % of isotactic polypropylene with a melt flow rate of between 0.5 and 20,000 g/10 min and a melting peak temperature of 145° C. or higher, and wherein the difference between the DSC peak melting and the peak crystallization temperatures is less than or equal to 0.5333 times the melting peak temperature minus 41.333° C., and between 50 and 99 wt % of ethylene-propylene copolymer including between 10 wt % and 20 wt % randomly distributed ethylene with a melt flow rate of between 0.5 and 20,000 g/10 min, wherein the copolymer is polymerized by a bulk homogeneous polymerization process, and wherein the total regio defects in the continuous propylene segments of the copolymer is between 40 and 150% greater than a copolymer of equivalent melt flow rate and wt % ethylene polymerized by a solution polymerization process.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: December 24, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Patrick Brant, Robert Patrick Reynolds, Jr., Aspy K. Mehta, Manika Varma-Nair, John W. Chu, Steven P. Rucker
  • Publication number: 20130324436
    Abstract: Disclosed are procedures and kits for nucleic acid-based molecular diagnostic determination of bacterial germ counts during which procedure evolutionarily conserved genes and genes coding for characteristic pathogenicity markers, favourably microbial enzyme, toxin, special resistance, are detected using real-time PCR amplification method with the application of fluorescent hydrolysis probes. The multiplication of nucleotide chains takes place with oligonucleotides annealing to the structural gene 5? end region and to the adjacent upstream regulatory promoter-operator region so that the presence of the structural gene is shown along with the adjacent upstream regulatory promoter-operator sequences; the functional nature of the structural gene is simultaneously checked. The result is measured with a genome unit equivalent DNA amount calibrated to the germ number of sample units equivalent to standard procedures.
    Type: Application
    Filed: November 30, 2010
    Publication date: December 5, 2013
    Applicant: DIAGON KFT
    Inventors: Gabor Kiss, Janos Kiss, Timea Kiss, Ambrusne Sztancsik Katalin Kovacs, Georgina Bernath
  • Patent number: 8445620
    Abstract: Provided are elastic propylene-alpha olefin blocky copolymers. In one form, the elastic propylene-alpha olefin blocky copolymer includes an ?-olefin content from 12 to 25 wt % and having a propylene crystallinity less than 30 J/g, a Tm <100° C. and a Tg >?45° C., wherein said copolymer has blocky propylene segments with r1r2 greater than 1.5, and a process for producing such copolymer.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: May 21, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Andy Haishung Tsou, Gabor Kiss, Robert Patrick Reynolds, Jr., John W. Chu, Alan Anthony Galuska, Patrick Brant, Donald Andrew Winesett
  • Publication number: 20130109027
    Abstract: Procedure for the specific isolation of total DNA content of bacterial germs of different samples, in the course of which the cells are lysated, the DNA content of the lysate is bound selectively, it is washed and then the desalinated linear polymer nucleic acid is eluted from the binding surface in an aqueous solution. Before cell lysis the nonviable bacterial cells are separated from the viable cells on the basis of their different cell surface physical-chemical characteristics, the viable cells of the sample are kept and then lysated using a mechanical and/or enzymatic, favourably lysozyme enzymatic method. After this exclusively double-stranded DNA deriving from the lysate of viable cells is bound on a —SiO2—TiO2- matrix containing chemically activated —OH and dodecylamine groups, and after washing it, the desalinated linear polymer nucleic acid is eluted in an aqueous solution.
    Type: Application
    Filed: July 7, 2010
    Publication date: May 2, 2013
    Inventors: Gabor Kiss, Janos Kiss, Katalin Sztancsik, Georgina Bernath
  • Patent number: 8410230
    Abstract: Provided are methods of producing polymers with broadened molecular weight and/or composition distribution in a continuous homogeneous polymerization system utilizing reactor temperature gradients, reactor polymer concentration gradients, monomer concentration gradients, catalyst concentration gradients, and combinations thereof in the polymerization reactor. Such methods are particularly suitable when utilizing metallocene catalysts and other single-site catalysts, which generally produce polymers with narrow molecular weight and composition distribution.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: April 2, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Robert Patrick Reynolds, Jr., John W. Chu, Patrick Brant, James Richardson Lattner
  • Patent number: 8399586
    Abstract: A process for feeding ethylene into a polymerization system includes providing a low-pressure ethylene stream, one or more low-pressure C3 to C20 monomer streams, an optional low-pressure inert solvent/diluent stream, and one or more reactors; metering the low-pressure ethylene stream, the one or more low-pressure C3 to C20 monomer streams, and the optional low-pressure inert solvent/diluent stream; blending the metered low-pressure ethylene stream, the metered one or more low-pressure C3 to C20 monomer streams, and the metered low-pressure optional inert solvent/diluent stream to form an ethylene-carrying low-pressure blended liquid feed stream; pressurizing the ethylene-carrying low-pressure blended liquid feed stream to the polymerization system pressure with one or more high-pressure pumps to thrm an ethylene-carrying high-pressure blended reactor feed stream; and feeding the ethylene-carrying high-pressure blended reactor feed stream to the one or more reactors.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: March 19, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Robert Patrick Reynolds, Jr., John W. Chu, James Richardson Lattner, Gary D. Mohr
  • Publication number: 20130035442
    Abstract: Provided are elastic propylene-alpha olefin blocky copolymers. In one form, the elastic propylene-alpha olefin blocky copolymer includes an ?-olefin content from 12 to 25 wt % and having a propylene crystallinity less than 30 J/g, a Tm <100° C. and a Tg >?45° C., wherein said copolymer has blocky propylene segments with r1r2 greater than 1.5, and a process for producing such copolymer.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 7, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Andy Haishung Tsou, Gabor Kiss, Robert Patrick Reynolds, JR., John W. Chu, Alan Anthony Galuska, Patrick Brant, Donald Andrew Winesett
  • Publication number: 20130018120
    Abstract: Provided is a dendritic ethylene polymer. The polymer is a dendritic polymer of an ethylene/alpha-olefin-diene copolymer and a vinyl-terminated polyethylene. There is also provided a process for making a dendritic ethylene polymer. The process includes the steps of preparing a dendritic ethylene polymer by reacting ethylene/alpha-olefin-diene copolymer with vinyl-terminated polyethylene in the presence of a radical source. There is also provided a blend and a blown film that include the dendritic ethylene polymer.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Andy H. Tsou, Shuji Luo, Donna J. Crowther, Gabor Kiss, Johannes M. Soulages, Pradeep P. Shirodkar
  • Publication number: 20130006029
    Abstract: A process for hydrotreating a first aromatics- and sulfur-containing hydrocarbon feed using a fresh supported CoMo catalyst, includes treating the fresh catalyst under first hydrotreating conditions with a second hydrocarbon feed having a lower aromatics content than the first feed.
    Type: Application
    Filed: February 21, 2011
    Publication date: January 3, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERINGCOMPANY
    Inventors: Gabor Kiss, Iulian Nistor, John Zengel, Sabato Miseo, Roman Krycak, Teh C. Ho
  • Patent number: 8318875
    Abstract: This invention relates to processes for producing an isotactic propylene homopolymer having more than 15 and less than 100 regio defects (sum of 2,1-erythro and 2,1-threo insertions and 3,1-isomerizations) per 10,000 propylene units; a weight-averaged molecular weight of 35000 g/mol or more; a peak melting temperature of greater than 149° C.; an mmmm pentad fraction of 0.85 or more; a heat of fusion of 80 J/g or more; and a peak melting temperature minus peak crystallization temperature (Tmp?Tcp) of less than or equal to (0.907 times Tmp) minus 99.64 (Tmp?Tcp<(0.907×Tmp)?99.64), as measured in ° C. on the homopolymer having 0 wt % nucleating agent.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: November 27, 2012
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Aspy K. Mehta, Manika Varma-Nair, Gabor Kiss, Robert P. Reynolds, John W. Chu, Steven P. Rucker
  • Publication number: 20120225998
    Abstract: Isotactic polypropylene ethylene-propylene copolymer blends and in-line processes for producing. The blends may have between 1 and 50 wt % of isotactic polypropylene with a melt flow rate of between 0.5 and 20,000 g/10 min and a melting peak temperature of 145° C. or higher, and wherein the difference between the DSC peak melting and the peak crystallization temperatures is less than or equal to 0.5333 times the melting peak temperature minus 41.333° C., and between 50 and 99 wt % of ethylene-propylene copolymer including between 10 wt % and 20 wt % randomly distributed ethylene with a melt flow rate of between 0.5 and 20,000 g/10 min, wherein the copolymer is polymerized by a bulk homogeneous polymerization process, and wherein the total regio defects in the continuous propylene segments of the copolymer is between 40 and 150% greater than a copolymer of equivalent melt flow rate and wt % ethylene polymerized by a solution polymerization process.
    Type: Application
    Filed: February 13, 2012
    Publication date: September 6, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Gabor Kiss, Patrick Brant, Robert Patrick Reynolds, JR., Aspy K. Mehta, Manika Varma-Nair, John W. Chu, Steven P. Rucker
  • Patent number: 8247495
    Abstract: Elastomeric polymer blends and processes for their production are described. Specifically, the polymer blends comprise a first polymer and a second polymer, where the first polymer comprises from about 70 wt % to about 90 wt % units derived from propylene and from about 10 wt % to about 30 wt % units derived from ethylene and/or a C4-C10 alpha-olefin, and the second polymer comprises from about 88 wt % to about 98 wt % units derived from propylene and from about 2 wt % to about 12 wt % units derived from ethylene and/or a C4-C10 alpha-olefin. The elastomeric polymer blends are further characterized by having two or more of the following properties: an overall propylene content of between about 75 wt % and about 90 wt %, a melting point between about 110° C. and about 145° C., a Vicat softening point greater than about 45° C.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: August 21, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Rainer Kolb, John W. Chu, Gabor Kiss, Robert P. Reynolds, Jr., Jean-Roch Schauder, Thomas T. Sun
  • Patent number: 8242237
    Abstract: A process for polymerizing olefins, comprising the steps of: (a) contacting in a dense-fluid-homogeneous-polymerization system (“PS”), >30 wt % C3+ olefins with: catalyst, activator, 0-50 mol % comonomer, and 0-40 wt % diluent/solvent, at a temperature > PS Tc and a pressure no lower than 1 MPa below the PS cloud point pressure and <200 MPa; (b) forming a reactor effluent comprising polymer-monomer mixture; (c) optionally heating the mixture (b); (d) collecting the mixture (b) in a separation vessel; (e) reducing the pressure to form a two-phase mixture where the pressure in the reactor is 7-100 MPa higher than the pressure in the separation vessel and the temperature in the separation vessel is > the polymer or above 80° C., whichever is higher; (f) separating the monomer-rich phase from the polymer-rich phase; (g) recycling the separated monomer-rich phase and recovering polymer from the polymer-rich phase.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: August 14, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chris B. Friedersdorf, Patrick Brant, Gabor Kiss
  • Patent number: 8173748
    Abstract: Provided is a heat-seal resin. The resin includes 5 wt % to 95 wt % of a first copolymer and 95 wt % to 5 wt % of a second copolymer based on the total weight of the resin. The first copolymer and the second copolymer together are 90 wt % or more of the total weight of the resin. The first copolymer includes a first monomer of an alphaolefin of 2 to 4 carbon atoms and a second monomer selected from a second monomer of an alphaolefin of 2 to 8 carbon atoms. The first monomer and the second monomer of the first copolymer are different. The first copolymer has an MFR of from 5 to 1000 g/10 minutes and a Tfm of 66° C. to 80° C. The second copolymer includes a first monomer of an alphaolefin of 2 to 4 carbon atoms and a second monomer selected from a second monomer of an alphaolefin of 2 to 8 carbon atoms. The first monomer and the second monomer of the second copolymer are different. The second copolymer has an MFR of from 0.5 to 5 g/10 minutes and a Tfm of 45° C. to 66° C.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: May 8, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: David John Lohse, Thomas Tungshi Sun, Aspy K. Mehta, Gabor Kiss, Robert Patrick Reynolds, Jr., John W. Chu, Manika Varma-Nair
  • Publication number: 20120108726
    Abstract: The invention relates to polyketone compounds and the at least partially hydrogenated products thereof, the use of said polyketone compounds and/or the at least partially hydrogenated products thereof as plasticizers, processes of making polyketone compounds and the at least partially hydrogenated products thereof, compositions comprising the polyketone compounds and/or the at least partially hydrogenated products thereof, and to articles formed from products of the invention.
    Type: Application
    Filed: January 6, 2012
    Publication date: May 3, 2012
    Inventors: Allen D Godwin, Kenneth J. Buturla, Karla S. Colle, Gabor Kiss, Kirk C. Nadler, Abhimanyu O. Patil, Edris Eileen Pike, Ramzi Y. Saleh, Jon E. Stanat, Manika Varma-Nair, Stephen Zushma
  • Patent number: 8143352
    Abstract: A process for fluid phase in-line blending of polymers.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: March 27, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Patrick Brant, Robert Patrick Reynolds, Jr., Robert Charles Portnoy, David B. Dunaway
  • Patent number: 8138269
    Abstract: Isotactic polypropylene ethylene-propylene copolymer blends and in-line processes for producing them. The blends may have between 1 and 50 wt % of isotactic polypropylene with a melt flow rate of between 0.5 and 20,000 g/10 min and a melting peak temperature of 145° C. or higher, and wherein the difference between the DSC peak melting and the peak crystallization temperatures is less than or equal to 0.5333 times the melting peak temperature minus 41.333° C., and between 50 and 99 wt % of ethylene-propylene copolymer including between 10 wt % and 20 wt % randomly distributed ethylene with a melt flow rate of between 0.5 and 20,000 g/10 min, wherein the copolymer is polymerized by a bulk homogeneous polymerization process, and wherein the total regio defects in the continuous propylene segments of the copolymer is between 40 and 150% greater than a copolymer of equivalent melt flow rate and wt % ethylene polymerized by a solution polymerization process.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: March 20, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Patrick Brant, Robert Patrick Reynolds, Jr., Aspy K. Mehta, Manika Varma-Nair, John W. Chu, Steven P. Rucker
  • Patent number: 8115034
    Abstract: The invention relates to polyketone compounds and the at least partially hydrogenated products thereof, the use of said polyketone compounds and/or the at least partially hydrogenated products thereof as plasticizers, processes of making polyketone compounds and the at least partially hydrogenated products thereof, compositions comprising the polyketone compounds and/or the at least partially hydrogenated products thereof, and to articles formed from products of the invention.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: February 14, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Allen D. Godwin, Kenneth J. Buturla, Karla S. Colle, Gabor Kiss, Kirk C. Nadler, Abhimanyu O. Patil, Edris Eileen Pike, Ramzi Y. Saleh, Jon E. Stanat, Manika Varma-Nair, Stephen Zushma
  • Publication number: 20110313115
    Abstract: This invention relates to a process for polymerizing olefins, comprising the steps of: (a) contacting in one or more reactors, in a dense fluid homogeneous polymerization system, olefin monomers having three or more carbon atoms present at 30 weight % or more (based upon the weight of the monomers and comonomers entering the reactor), with: 1) one or more catalyst compounds, 2) one or more activators, 3) from 0 to 50 mole % comonomer (based upon the amount of the monomers and comonomers entering the reactor), and 4) 0 to 40 wt % diluent or solvent (based upon the weight of the polymerization system), at a temperature above the crystallization temperature of the polymerization system and a pressure no lower than 10 MPa below the cloud point pressure of the polymerization system and less than 200 MPa, where the polymerization system comprises the monomers, any comonomer present, any diluent or solvent present, any scavenger present, and the polymer product; (b) forming a reactor effluent comprising a polymer-mo
    Type: Application
    Filed: September 13, 2007
    Publication date: December 22, 2011
    Inventors: Chris B. Friedersdorf, Patrick Brant, Gabor Kiss