Patents by Inventor Ganesh Balasubramanian

Ganesh Balasubramanian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11451389
    Abstract: An apparatus configured to generate responses to a multi-encrypted email message. The apparatus is configured to receive an email message comprising a first portion having a first level of encryption and a second portion having a second level of encryption. The apparatus is configured to receive an indication that a first portion of a reply message is in response to the first portion of the received email message. The apparatus is further configured to receive an indication that a second portion of the reply message is in response to the second portion of the received email message. The apparatus encrypts the first portion of the reply message using a first encryption key. The apparatus further encrypts the second portion of the reply message using a second encryption key. Finally, the apparatus transmits the reply message to a server.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: September 20, 2022
    Assignee: Bank of America Corporation
    Inventors: MadhuSudhanan Krishnamoorthy, Ganesh Balasubramanian
  • Publication number: 20220293416
    Abstract: Exemplary methods of semiconductor processing may include forming a plasma of a carbon-containing precursor and an inert precursor within a processing region of a semiconductor processing chamber. The methods may include, subsequent a first period of time, increasing a flow rate of the carbon-containing precursor and a flow rate of the inert precursor. The methods may include increasing a plasma power at which the plasma is formed. The methods may include performing a deposition process on a semiconductor substrate disposed within the processing region of the semiconductor processing chamber.
    Type: Application
    Filed: March 12, 2021
    Publication date: September 15, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sudha S. Rathi, Ganesh Balasubramanian, Tae Won Kim
  • Patent number: 11437262
    Abstract: Methods and systems of detection of wafer de-chucking in a semiconductor processing chamber are disclosed. Methods and systems of interdiction are also disclosed to prevent hardware and wafer damage during semiconductor fabrication if and when de-chucking is detected. In one embodiment, a de-chucking detection method is based on measuring change in imaginary impedance of a plasma circuit, along with measuring one or both of reflected RF power and arc count. In another embodiment, a possibility of imminent de-chucking is detected even before complete de-chucking occurs by analyzing the signature change in imaginary impedance.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: September 6, 2022
    Assignee: Applied Materials, Inc
    Inventors: Ganesh Balasubramanian, Byung Chul Yoon, Hemant Mungekar
  • Publication number: 20220178017
    Abstract: In one example, a method includes flowing a carbon-containing gas into a processing volume of a process chamber, the process chamber having internal surfaces comprising aluminum, and depositing a carbon film on the internal surfaces of the process chamber. The method also includes flowing fluorine radicals into the process chamber, and fluorinating the carbon film to create a CFx layer on the internal surfaces. The method also includes oxidizing the CFx layer on the internal surfaces creating an AlOCFx layer on the internal surfaces.
    Type: Application
    Filed: December 3, 2020
    Publication date: June 9, 2022
    Inventors: Anup Kumar SINGH, Vinayak Vishwanath HASSAN, Bhaskar KUMAR, Ganesh BALASUBRAMANIAN
  • Publication number: 20220122872
    Abstract: Semiconductor processing systems and method are described that may include flowing deposition precursors into a substrate processing region of a semiconductor processing chamber, where the substrate processing region includes an electrostatic chuck. The methods may further include depositing a seasoning layer on the electrostatic chuck from the deposition precursors to form a seasoned electrostatic chuck. The seasoning layer may be characterized by a dielectric constant greater than or about 3.5. The methods may still further include applying a voltage to the seasoned electrostatic chuck of greater than or about 500 V. The seasoned electrostatic chuck may be characterized by a leakage current of less than or about 25 mA when the voltage is applied.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 21, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Akhil Singhal, Allison Yau, Zeqiong Zhao, Sang-Jin Kim, Zhijun Jiang, Deenesh Padhi, Ganesh Balasubramanian
  • Publication number: 20220123114
    Abstract: Exemplary semiconductor structures and processing methods may include forming a first portion of a first semiconductor layer characterized by a first etch rate for an etch treatment, forming a second portion of the first semiconductor layer characterized by a second etch rate that is less than the first etch rate for the etch treatment, and forming a third portion of the first semiconductor layer characterized by a third etch rate that is greater than the second etch rate.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 21, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Akhil Singhal, Allison Yau, Sang-Jin Kim, Zeqiong Zhao, Zhijun Jiang, Deenesh Padhi, Ganesh Balasubramanian
  • Publication number: 20220122823
    Abstract: Exemplary processing methods may include forming a plasma of a cleaning precursor in a remote region of a semiconductor processing chamber. The methods may include flowing plasma effluents of the cleaning precursor into a processing region of the semiconductor processing chamber. The methods may include contacting a substrate support with the plasma effluents for a first period of time. The methods may include lowering the substrate support from a first position to a second position while continuing to flow plasma effluents of the cleaning precursor. The methods may include cleaning the processing region of the semiconductor processing chamber for a second period of time.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 21, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Fei Wu, Abdul Aziz Khaja, Sungwon Ha, Ganesh Balasubramanian, Vinay Prabhakar
  • Publication number: 20220102141
    Abstract: Embodiments of the present disclosure generally relate to methods of depositing carbon film layers greater than 3,000 ? in thickness over a substrate and surface of a lid of a chamber using dual frequency, top, sidewall and bottom sources. The method includes introducing a gas to a processing volume of a chamber. A first radiofrequency (RF) power is provided having a first frequency of about 40 MHz or greater to a lid of the chamber. A second RF power is provided having a second frequency to a bias electrode disposed in a substrate support within the processing volume. The second frequency is about 10 MHz to about 40 MHz. An additional third RF power is provided having lower frequency of about 400 kHz to about 2 MHz to the bias electrode.
    Type: Application
    Filed: September 28, 2020
    Publication date: March 31, 2022
    Inventors: Anup Kumar SINGH, Rick KUSTRA, Vinayak Vishwanath HASSAN, Bhaskar KUMAR, Krishna NITTALA, Pramit MANNA, Kaushik Comandoor ALAYAVALLI, Ganesh BALASUBRAMANIAN
  • Patent number: 11276562
    Abstract: A system for modifying the uniformity pattern of a thin film deposited in a plasma processing chamber includes a single radio-frequency (RF) power source that is coupled to multiple points on the discharge electrode of the plasma processing chamber. Positioning of the multiple coupling points, a power distribution between the multiple coupling points, or a combination of both are selected to at least partially compensate for a consistent non-uniformity pattern of thin films produced by the chamber. The power distribution between the multiple coupling points may be produced by an appropriate RF phase difference between the RF power applied at each of the multiple coupling points.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: March 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Zheng John Ye, Ganesh Balasubramanian, Thuy Britcher, Jay D. Pinson, II, Hiroji Hanawa, Juan Carlos Rocha-Alvarez, Kwangduk Douglas Lee, Martin Jay Seamons, Bok Hoen Kim, Sungwon Ha
  • Publication number: 20220064797
    Abstract: A lid for a process chamber includes a plate having a first surface and a second surface opposite the first surface. The first surface has a recess and a seal groove formed in the first surface and surrounding the recess. The lid further includes an array of holes extending from the recess to the second surface.
    Type: Application
    Filed: August 16, 2021
    Publication date: March 3, 2022
    Inventors: Akshay DHANAKSHIRUR, Juan Carlos ROCHA-ALVAREZ, Kaushik Comandoor ALAYAVALLI, Jay D. PINSON, II, Rick KUSTRA, Badri N. RAMAMURTHI, Anup Kumar SINGH, Ganesh BALASUBRAMANIAN, Bhaskar KUMAR, Vinayak Vishwanath HASSAN, Canfeng LAI, Kallol BERA, Sathya Swaroop GANTA
  • Publication number: 20220037126
    Abstract: Embodiments of the disclosure relate to articles, coated chamber components and methods of coating chamber components with a protective coating that includes at least one metal fluoride having a formula selected from the group consisting of M1xFw, M1xM2yFw and M1xM2yM3zFw, where at least one of M1, M2, or M3 is magnesium or lanthanum. The protective coating can be deposited by atomic layer deposition, chemical vapor deposition, electron beam ion assisted deposition, or physical vapor deposition.
    Type: Application
    Filed: August 3, 2020
    Publication date: February 3, 2022
    Inventors: Jennifer Y. Sun, Ren-Guan Duan, Gayatri Natu, Tae Won Kim, Jiyong Huang, Nitin Deepak, Paul Brillhart, Lin Zhang, Yikai Chen, Sanni Sinikka Seppälä, Ganesh Balasubramanian, JuanCarlos Rocha, Shankar Venkataraman, Katherine Elizabeth Woo
  • Publication number: 20220020570
    Abstract: Exemplary semiconductor processing systems may include a processing chamber including a lid stack having an output manifold. The systems may include a gas panel. The systems may include an input manifold. The input manifold may fluidly couple the gas panel with the output manifold of the processing chamber. A delivery line may extend from the input manifold to the output manifold. The systems may include a first transmission line extending from a first set of precursor sources of the gas panel to the delivery line. The systems may include a second transmission line extending from a second set of precursor sources of the gas panel to the delivery line. The second transmission line may be switchably coupled between the delivery line and an exhaust of the semiconductor processing system.
    Type: Application
    Filed: July 19, 2020
    Publication date: January 20, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sai Susmita Addepalli, Yue Chen, Abhigyan Keshri, Qiang Ma, Zhijun Jiang, Shailendra Srivastava, Daemian Raj Benjamin Raj, Ganesh Balasubramanian
  • Publication number: 20220003074
    Abstract: A valve assembly that can be deployed in a subterranean well that includes a valve adapted to selectively isolate a region of the subterranean well, and a separating apparatus. The separating apparatus may further include at least one member being formed from a functional material and at least two sleeves connected by the at least one member.
    Type: Application
    Filed: November 4, 2019
    Publication date: January 6, 2022
    Inventors: Ganesh Balasubramanian, Ashish Sharma
  • Publication number: 20210409198
    Abstract: An apparatus configured to generate responses to a multi-encrypted email message. The apparatus is configured to receive an email message comprising a first portion having a first level of encryption and a second portion having a second level of encryption. The apparatus is configured to receive an indication that a first portion of a reply message is in response to the first portion of the received email message. The apparatus is further configured to receive an indication that a second portion of the reply message is in response to the second portion of the received email message. The apparatus encrypts the first portion of the reply message using a first encryption key. The apparatus further encrypts the second portion of the reply message using a second encryption key. Finally, the apparatus transmits the reply message to a server.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 30, 2021
    Inventors: MadhuSudhanan Krishnamoorthy, Ganesh Balasubramanian
  • Publication number: 20210409380
    Abstract: An apparatus configured to construct an email message addressed to a plurality of recipients. The apparatus is further configured to apply a cipher and a first encryption key to a first portion of the email message, which will be viewable by each of the recipients. The apparatus applies the cipher and a second encryption key to a second portion of the email message, which will be viewable by a first recipient from among the recipients. The apparatus further applies the cipher and a third encryption key to a third portion of the mail message, which will be viewable by a second recipient from among the recipients. The apparatus then transmits the email message to a server.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 30, 2021
    Inventors: MadhuSudhanan Krishnamoorthy, Ganesh Balasubramanian
  • Publication number: 20210351020
    Abstract: Apparatus and methods for generating a flow of radicals are provided. An ion blocker is positioned a distance from a faceplate of a remote plasma source. The ion blocker has openings to allow the plasma to flow through. The ion blocker is polarized relative to a showerhead positioned on an opposite side of the ion blocker so that there are substantially no plasma gas ions passing through the showerhead.
    Type: Application
    Filed: July 20, 2021
    Publication date: November 11, 2021
    Inventors: Vivek B. Shah, Vinayak Vishwanath Hassan, Bhaskar Kumar, Ganesh Balasubramanian
  • Patent number: 11145504
    Abstract: A method of forming a film stack with reduced defects is provided and includes positioning a substrate on a substrate support within a processing chamber and sequentially depositing polysilicon layers and silicon oxide layers to produce the film stack on the substrate. The method also includes supplying a current of greater than 5 ampere (A) to a plasma profile modulator while generating a deposition plasma within the processing chamber, exposing the substrate to the deposition plasma while depositing the polysilicon layers and the silicon oxide layers, and maintaining the processing chamber at a pressure of greater than 2 Torr to about 100 Torr while depositing the polysilicon layers and the silicon oxide layers.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: October 12, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Jiang, Ganesh Balasubramanian, Arkajit Roy Barman, Hidehiro Kojiri, Xinhai Han, Deenesh Padhi, Chuan Ying Wang, Yue Chen, Daemian Raj Benjamin Raj, Nikhil Sudhindrarao Jorapur, Vu Ngoc Tran Nguyen, Miguel S. Fung, Jose Angelo Olave, Thian Choi Lim
  • Patent number: 11136665
    Abstract: Embodiments of the invention contemplate a shadow ring that provides increased or decreased and more uniform deposition on the edge of a wafer. By removing material from the top and/or bottom surfaces of the shadow ring, increased edge deposition and bevel coverage can be realized. In one embodiment, the material on the bottom surface is reduced by providing a recessed slot on the bottom surface. By increasing the amount of material of the shadow ring, the edge deposition and bevel coverage is reduced. Another approach to adjusting the deposition at the edge of the wafer includes increasing or decreasing the inner diameter of the shadow ring. The material forming the shadow ring may also be varied to change the amount of deposition at the edge of the wafer.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: October 5, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Dale Du Bois, Mohamad A. Ayoub, Robert Kim, Amit Kumar Bansal, Mark Fodor, Binh Nguyen, Siu F. Cheng, Hang Yu, Chiu Chan, Ganesh Balasubramanian, Deenesh Padhi, Juan Carlos Rocha
  • Patent number: 11133210
    Abstract: A method and apparatus for positioning and heating a substrate in a chamber are provided. In one embodiment, the apparatus comprises a substrate support assembly having a support surface adapted to receive the substrate and a plurality of centering fingers for supporting the substrate at a distance parallel to the support surface and for centering the substrate relative to a reference axis substantially perpendicular to the support surface. The plurality of the centering fingers are movably disposed along a periphery of the support surface, and each of the plurality of centering fingers comprises a first end portion for either contacting or supporting a peripheral edge of the substrate.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: September 28, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Dale R. Du Bois, Juan Carlos Rocha-Alvarez, Sanjeev Baluja, Ganesh Balasubramanian, Lipyeow Yap, Jianhua Zhou, Thomas Nowak
  • Patent number: 11122021
    Abstract: An apparatus is configured to receive an email message that is addressed to a plurality of recipients. The email message comprises a first portion with a first level of encryption and a second portion with a second level of encryption. The apparatus creates a first instance of the message to be sent to a first recipient from among the plurality of recipients. In the first instance, the apparatus masks the portions of the message that are not of the first level of encryption. The apparatus creates a second instance of the message to be sent to a second recipient from among the plurality of recipients. In the second instance, the apparatus masks the portions of the message that are not of the first or second levels of encryption. The apparatus is further configured to transmit the first instance to the first recipient and the second instance to the second recipient.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: September 14, 2021
    Assignee: Bank of America Corporation
    Inventors: MadhuSudhanan Krishnamoorthy, Ganesh Balasubramanian