Patents by Inventor Ganesh Balasubramanian

Ganesh Balasubramanian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240052730
    Abstract: Electrical gas lift valves and systems including electrical gas lift valves are provided.
    Type: Application
    Filed: February 9, 2022
    Publication date: February 15, 2024
    Inventors: Ganesh Balasubramanian, Oguzhan Guven, Jason Bigelow, Naomi Crawford, Yann Dufour, Maria Tafur, Robert Krush
  • Patent number: 11898249
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: February 13, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward W. Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Patent number: 11894228
    Abstract: Exemplary methods of semiconductor processing may include forming a plasma of a carbon-containing precursor in a processing region of a semiconductor processing chamber. The methods may include depositing a carbon-containing material on a substrate housed in the processing region of the semiconductor processing chamber. The methods may include halting a flow of the carbon-containing precursor into the processing region of the semiconductor processing chamber. The methods may include contacting the carbon-containing material with plasma effluents of an oxidizing material. The methods may include forming volatile materials from a surface of the carbon-containing material.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: February 6, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Sudha S. Rathi, Ganesh Balasubramanian, Nagarajan Rajagopalan, Abdul Aziz Khaja, Prashanthi Para, Hiral D. Tailor
  • Patent number: 11875969
    Abstract: A processing system comprises a chamber body, a substrate support and a lid assembly. The substrate support is located in the chamber body and comprises a first electrode. The lid assembly is positioned over the chamber body and defines a processing volume. The lid assembly comprises a faceplate, a second electrode positioned between the faceplate and the chamber body, and an insulating member positioned between the second electrode and the processing volume. A power supply system is coupled to the first electrode and the faceplate and is configured to generate a plasma in the processing volume.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: January 16, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Fei Wu, Abdul Aziz Khaja, Sungwon Ha, Vinay K. Prabhakar, Ganesh Balasubramanian
  • Publication number: 20240011371
    Abstract: A tool includes a mandrel and at least one gate. The mandrel includes a bore, and the mandrel is able to connect in-line with at least one sand control device of a bottom hole assembly such that the mandrel is coaxial with the at least one sand control device. The mandrel also includes a flow path configuration, such as, at least one flow path connecting the at least one sand control device to the bore, at least one flow path connecting the bore to at least two sand control devices, and at least one flow path connecting the bore to the at least one sand control device and to another device of the bottom hole assembly. The at least one gate has an initial position, and the at least one gate is configured to move from the initial position into a different position to control fluid flow.
    Type: Application
    Filed: October 5, 2021
    Publication date: January 11, 2024
    Inventors: Maria Tafur, Ganesh Balasubramanian, Amrendra Kumar, Raghuram Kamath, Benoit Deville, Michael Dean Langlais
  • Patent number: 11859275
    Abstract: Implementations of the present disclosure generally relate to hardmask films and methods for depositing hardmask films. More particularly, implementations of the present disclosure generally relate to tungsten carbide hardmask films and processes for depositing tungsten carbide hardmask films. In one implementation, a method of forming a tungsten carbide film is provided. The method comprises forming a tungsten carbide initiation layer on a silicon-containing surface of a substrate at a first deposition rate. The method further comprises forming a tungsten carbide film on the tungsten carbide initiation layer at a second deposition rate, wherein the second deposition rate is greater than the first deposition rate.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: January 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Vivek Bharat Shah, Anup Kumar Singh, Bhaskar Kumar, Ganesh Balasubramanian
  • Publication number: 20230411462
    Abstract: Exemplary semiconductor structures and processing methods may include forming a first portion of a first semiconductor layer characterized by a first etch rate for an etch treatment, forming a second portion of the first semiconductor layer characterized by a second etch rate that is less than the first etch rate for the etch treatment, and forming a third portion of the first semiconductor layer characterized by a third etch rate that is greater than the second etch rate. The processing methods may further include etching an opening through the first semiconductor layer, where the opening has a height and a width, and where the opening is characterized by a variation in the width between a midpoint of the height of the opening and an endpoint of the opening that is less than or about 5 ?.
    Type: Application
    Filed: September 1, 2023
    Publication date: December 21, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Akhil Singhal, Allison Yau, Sang-Jin Kim, Zeqiong Zhao, Zhijun Jiang, Deenesh Padhi, Ganesh Balasubramanian
  • Patent number: 11837448
    Abstract: Examples disclosed herein relate to a method and apparatus for cleaning and repairing a substrate support having a heater disposed therein. A method includes (a) cleaning a surface of a substrate support having a bulk layer, the substrate support is disposed in a processing environment configured to process substrates. The cleaning process includes forming a plasma at a high temperature from a cleaning gas mixture having a fluorine containing gas and oxygen. The method includes (b) removing oxygen radicals from the processing environment with a treatment plasma formed from a treatment gas mixture. The treatment gas mixture includes the fluorine containing gas. The method further includes (c) repairing an interface of the substrate support and the bulk layer with a post-treatment plasma. The post-treatment plasma is formed from a post-treatment gas mixture including a nitrogen containing gas. The high temperature is greater than or equal to about 500 degrees Celsius.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: December 5, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Shuran Sheng, Lin Zhang, Jiyong Huang, Jang Seok Oh, Joseph C. Werner, Nitin Khurana, Ganesh Balasubramanian, Jennifer Y. Sun, Xinhai Han, Zhijun Jiang
  • Patent number: 11814928
    Abstract: A valve assembly that can be deployed in a subterranean well that includes a valve adapted to selectively isolate a region of the subterranean well, and a separating apparatus. The separating apparatus may further include at least one member being formed from a functional material and at least two sleeves connected by the at least one member.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: November 14, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Ganesh Balasubramanian, Ashish Sharma
  • Publication number: 20230343586
    Abstract: Embodiments of the present disclosure generally relate to methods for cleaning a chamber comprising introducing a gas to a processing volume of the chamber, providing a first radiofrequency (RF) power having a first frequency of about 40 MHz or greater to a lid of the chamber, providing a second RF power having a second frequency to an electrode disposed in a substrate support within the processing volume, and removing at least a portion of a film disposed on a surface of a chamber component of the chamber. The second frequency is about 10 MHz to about 20 MHz.
    Type: Application
    Filed: June 27, 2023
    Publication date: October 26, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Anup Kumar SINGH, Rick KUSTRA, Vinayak Vishwanath HASSAN, Bhaskar KUMAR, Krishna NITTALA, Pramit MANNA, Kaushik ALAYAVALLI, Ganesh BALASUBRAMANIAN
  • Patent number: 11798820
    Abstract: A system may include a main line for delivering a first gas, and a sensor for measuring a concentration of a precursor in the first gas delivered through the main line. The system may further include first and second sublines for providing fluid access to first and second processing chambers, respectively. The first subline may include a first flow controller for controlling the first gas flowed through the first subline. The second subline may include a second flow controller for controlling the first gas flowed through the second subline. A delivery controller may be configured to control the first and second flow controllers based on the measured concentration of the precursor to deliver a first mixture of the first gas and a second gas and a second mixture of the first and second gases into the first and second semiconductor processing chambers, respectively.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: October 24, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Diwakar Kedlaya, Fang Ruan, Zubin Huang, Ganesh Balasubramanian, Kaushik Alayavalli, Martin Seamons, Kwangduk Lee, Rajaram Narayanan, Karthik Janakiraman
  • Patent number: 11784229
    Abstract: Exemplary semiconductor structures and processing methods may include forming a first portion of a first semiconductor layer characterized by a first etch rate for an etch treatment, forming a second portion of the first semiconductor layer characterized by a second etch rate that is less than the first etch rate for the etch treatment, and forming a third portion of the first semiconductor layer characterized by a third etch rate that is greater than the second etch rate. The processing methods may further include etching an opening through the first semiconductor layer, where the opening has a height and a width, and where the opening is characterized by a variation in the width between a midpoint of the height of the opening and an endpoint of the opening that is less than or about 5 ?.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: October 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Akhil Singhal, Allison Yau, Sang-Jin Kim, Zeqiong Zhao, Zhijun Jiang, Deenesh Padhi, Ganesh Balasubramanian
  • Publication number: 20230298870
    Abstract: Exemplary processing methods may include forming a plasma of a cleaning precursor in a remote region of a semiconductor processing chamber. The methods may include flowing plasma effluents of the cleaning precursor into a processing region of the semiconductor processing chamber. The methods may include contacting a substrate support with the plasma effluents for a first period of time. The methods may include lowering the substrate support from a first position to a second position while continuing to flow plasma effluents of the cleaning precursor. The methods may include cleaning the processing region of the semiconductor processing chamber for a second period of time.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 21, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Fei Wu, Abdul Aziz Khaja, Sungwon Ha, Ganesh Balasubramanian, Vinay Prabhakar
  • Patent number: 11757846
    Abstract: An apparatus configured to construct an email message addressed to a plurality of recipients. The apparatus is further configured to apply a cipher and a first encryption key to a first portion of the email message, which will be viewable by each of the recipients. The apparatus applies the cipher and a second encryption key to a second portion of the email message, which will be viewable by a first recipient from among the recipients. The apparatus further applies the cipher and a third encryption key to a third portion of the mail message, which will be viewable by a second recipient from among the recipients. The apparatus then transmits the email message to a server.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: September 12, 2023
    Assignee: Bank of America Corporation
    Inventors: MadhuSudhanan Krishnamoorthy, Ganesh Balasubramanian
  • Publication number: 20230274968
    Abstract: Semiconductor processing systems and method are described that may include flowing deposition precursors into a substrate processing region of a semiconductor processing chamber, where the substrate processing region includes an electrostatic chuck. The methods may further include depositing a seasoning layer on the electrostatic chuck from the deposition precursors to form a seasoned electrostatic chuck. The seasoning layer may be characterized by a dielectric constant greater than or about 3.5. The methods may still further include applying a voltage to the seasoned electrostatic chuck of greater than or about 500 V. The seasoned electrostatic chuck may be characterized by a leakage current of less than or about 25 mA when the voltage is applied.
    Type: Application
    Filed: May 5, 2023
    Publication date: August 31, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Akhil Singhal, Allison Yau, Zeqiong Zhao, Sang-Jin Kim, Zhijun Jiang, Deenesh Padhi, Ganesh Balasubramanian
  • Patent number: 11721545
    Abstract: Embodiments of the present disclosure generally relate to methods of depositing carbon film layers greater than 3,000 ? in thickness over a substrate and surface of a lid of a chamber using dual frequency, top, sidewall and bottom sources. The method includes introducing a gas to a processing volume of a chamber. A first radiofrequency (RF) power is provided having a first frequency of about 40 MHz or greater to a lid of the chamber. A second RF power is provided having a second frequency to a bias electrode disposed in a substrate support within the processing volume. The second frequency is about 10 MHz to about 40 MHz. An additional third RF power is provided having lower frequency of about 400 kHz to about 2 MHz to the bias electrode.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: August 8, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Anup Kumar Singh, Rick Kustra, Vinayak Vishwanath Hassan, Bhaskar Kumar, Krishna Nittala, Pramit Manna, Kaushik Comandoor Alayavalli, Ganesh Balasubramanian
  • Patent number: 11699577
    Abstract: Exemplary methods of treating a chamber may include delivering a cleaning precursor to a remote plasma unit. The methods may include forming a plasma of the cleaning precursor. The methods may include delivering plasma effluents of the cleaning precursor to a processing region of a semiconductor processing chamber. The processing region may be defined by one or more chamber components. The one or more chamber components may include an oxide coating. The methods may include halting delivery of the plasma effluents. The methods may include treating the oxide coating with a hydrogen-containing material delivered to the processing region subsequent halting delivery of the plasma effluents.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: July 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sarah Michelle Bobek, Ruiyun Huang, Abdul Aziz Khaja, Amit Bansal, Dong Hyung Lee, Ganesh Balasubramanian, Tuan Anh Nguyen, Sungwon Ha, Anjana M. Patel, Ratsamee Limdulpaiboon, Karthik Janakiraman, Kwangduk Douglas Lee
  • Publication number: 20230205196
    Abstract: A method includes identifying sets of sensor data associated with wafers processed via wafer processing equipment and identifying sets of metrology data associated with the wafers processed via the wafer processing equipment. The method further includes generating sets of aggregated sensor-metrology data, each of the sets of aggregated sensor-metrology data including a respective set of sensor data and a respective set of metrology data. The method further includes causing, based on the sets of aggregated sensor-metrology data, performance of a corrective action associated with the wafer processing equipment.
    Type: Application
    Filed: February 27, 2023
    Publication date: June 29, 2023
    Inventors: Sidharth Bhatia, Garrett H. Sin, Heng-Cheng Pai, Pramod Nambiar, Ganesh Balasubramanian, Irfan Jamil
  • Publication number: 20230193466
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 22, 2023
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward W. BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Patent number: 11670492
    Abstract: Exemplary processing methods may include forming a plasma of a cleaning precursor in a remote region of a semiconductor processing chamber. The methods may include flowing plasma effluents of the cleaning precursor into a processing region of the semiconductor processing chamber. The methods may include contacting a substrate support with the plasma effluents for a first period of time. The methods may include lowering the substrate support from a first position to a second position while continuing to flow plasma effluents of the cleaning precursor. The methods may include cleaning the processing region of the semiconductor processing chamber for a second period of time.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: June 6, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Fei Wu, Abdul Aziz Khaja, Sungwon Ha, Ganesh Balasubramanian, Vinay Prabhakar