Patents by Inventor Garry A. Mercaldi

Garry A. Mercaldi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040161893
    Abstract: Structures and methods for making a semiconductor structure are discussed. The semiconductor structure includes a rough surface having protrusions formed from an undoped silicon film. If the semiconductor structure is a capacitor, the protrusions help to increase the capacitance of the capacitor. The semiconductor structure also includes a relatively smooth surface abutting the rough surface, wherein the relatively smooth surface is formed from a polycrystalline material.
    Type: Application
    Filed: February 18, 2004
    Publication date: August 19, 2004
    Inventors: Randhir P.S. Thakur, Garry A. Mercaldi, Michael Nuttall, Shenlin Chen, Er-Xuan Ping
  • Patent number: 6746922
    Abstract: A dielectric insulating composite for insulating a floating gate from a control gate in a non-volatile memory is described. A material, such as an undoped polysilicon, amorphous silicon, or amorphous polysilicon or a silicon rich nitride, is inserted in the gate structure. The oxide film that results from the oxidation of these films is relatively free from impurities. As a result, charge leakage between the floating gate and control gate is reduced.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: June 8, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Michael Nuttall, Garry A. Mercaldi
  • Patent number: 6682970
    Abstract: A semiconductor structure includes a dielectric layer having first and second opposing sides. A conductive layer is adjacent to the first side of the dielectric layer and is coupled to a first terminal, and a conductive barrier layer is adjacent to the second side of the dielectric layer and is coupled to a second terminal. The conductive barrier layer may be formed from tungsten nitride, tungsten silicon nitride, titanium silicon nitride or other barrier material.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: January 27, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Randhir P. S. Thakur, Garry A. Mercaldi, Michael Nuttall
  • Patent number: 6673675
    Abstract: The present invention provides a method of forming an MRAM cell which minimizes the occurrence of electrical shorts during fabrication. A first conductor is provided in a trench in an insulating layer and an upper surface of the insulating layer and the first conductor is planarized. Then, a first dielectric layer is deposited over the first conductor and insulating layer to a thickness at least greater than the thickness of a desired MRAM cell. The first dielectric layer is then patterned and etched to form an opening over the first conductor for the cell shapes. Then, the magnetic layers comprising the MRAM cell are consecutively formed within the cell shapes and the first dielectric layer.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: January 6, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Donald L. Yates, Garry A. Mercaldi
  • Publication number: 20030205749
    Abstract: Container structures for use in integrated circuits and methods of their manufacture without the use of mechanical planarization such as chemical-mechanical planarization (CMP), thus eliminating CMP-induced defects and variations. The methods utilize localized masking of holes for protection of the inside of the holes during non-mechanical removal of exposed surface layers. The localized masking is accomplished through differential exposure of a resist layer to electromagnetic or thermal energy. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
    Type: Application
    Filed: June 3, 2003
    Publication date: November 6, 2003
    Applicant: Micron Technology, Inc.
    Inventors: Donald L. Yates, Garry A. Mercaldi
  • Publication number: 20030203508
    Abstract: Methods for forming the lower electrode of a capacitor in a semiconductor circuit, and the capacitors formed by such methods are provided. The lower electrode is fabricated by forming a texturizing underlayer and then depositing a conductive material thereover. In one embodiment of a method of forming the lower electrode, the texturizing layer is formed by depositing a polymeric material comprising a hydrocarbon block and a silicon-containing block, over the insulative layer of a container, and then subsequently converting the polymeric film to relief or porous nanostructures by exposure to UV radiation and ozone, resulting in a textured porous or relief silicon oxycarbide film. A conductive material is then deposited over the texturizing layer resulting in a lower electrode have an upper roughened surface.
    Type: Application
    Filed: April 7, 2003
    Publication date: October 30, 2003
    Applicant: Micron Technology, Inc.
    Inventors: Donald L. Yates, Garry A. Mercaldi, James J. Hofmann
  • Patent number: 6639266
    Abstract: Container structures for use in integrated circuits and methods of their manufacture without the use of mechanical planarization such as chemical-mechanical planarization (CMP), thus eliminating CMP-induced defects and variations. The methods utilize localized masking of holes for protection of the inside of the holes during non-mechanical removal of exposed surface layers. The localized masking is accomplished through differential exposure of a resist layer to electromagnetic or thermal energy. The methods further include modifying the removal selectivity of the surface material relative to material protected by the localized masking. Modification of the removal selectivity eases or quickens removal of the surface material. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: October 28, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Donald L. Yates, Garry A. Mercaldi
  • Publication number: 20030198093
    Abstract: The present invention provides a method of forming an MRAM cell which minimizes the occurrence of electrical shorts during fabrication. A first conductor is provided in a trench in an insulating layer and an upper surface of the insulating layer and the first conductor is planarized. Then, a first dielectric layer is deposited over the first conductor and insulating layer to a thickness at least greater than the thickness of a desired MRAM cell. The first dielectric layer is then patterned and etched to form an opening over the first conductor for the cell shapes. Then, the magnetic layers comprising the MRAM cell are consecutively formed within the cell shapes and the first dielectric layer.
    Type: Application
    Filed: April 11, 2002
    Publication date: October 23, 2003
    Inventors: Donald L. Yates, Garry A. Mercaldi
  • Publication number: 20030160278
    Abstract: A dielectric insulating composite for insulating a floating gate from a control gate in a non-volatile memory is described. A material, such as an undoped polysilicon, amorphous silicon, or amorphous polysilicon or a silicon rich nitride, is inserted in the gate structure. The oxide film that results from the oxidation of these films is relatively free from impurities. As a result, charge leakage between the floating gate and control gate is reduced.
    Type: Application
    Filed: February 18, 2003
    Publication date: August 28, 2003
    Applicant: Micron Technology, Inc.
    Inventors: Michael Nuttall, Garry A. Mercaldi
  • Publication number: 20030134436
    Abstract: Methods for forming the lower electrode of a capacitor in a semiconductor circuit, and the capacitors formed by such methods are provided. The lower electrode is fabricated by forming a texturizing underlayer and then depositing a conductive material thereover. In one embodiment of a method of forming the lower electrode, the texturizing layer is formed by depositing a polymeric material comprising a hydrocarbon block and a silicon-containing block, over the insulative layer of a container, and then subsequently converting the polymeric film to relief or porous nanostructures by exposure to UV radiation and ozone, resulting in a textured porous or relief silicon oxycarbide film. A conductive material is then deposited over the texturizing layer resulting in a lower electrode have an upper roughened surface.
    Type: Application
    Filed: January 16, 2002
    Publication date: July 17, 2003
    Inventors: Donald L. Yates, Garry A. Mercaldi, James J. Hofmann
  • Patent number: 6573554
    Abstract: Container structures for use in integrated circuits and methods of their manufacture without the use of mechanical planarization such as chemical-mechanical planarization (CMP), thus eliminating CMP-induced defects and variations. The methods utilize localized masking of holes for protection of the inside of the holes during non-mechanical removal of exposed surface layers. The localized masking is accomplished through differential exposure of a resist layer to electromagnetic or thermal energy. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: June 3, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Donald L. Yates, Garry A. Mercaldi
  • Publication number: 20030073308
    Abstract: A deposition method includes forming a nucleation layer over a substrate, forming a layer of a first substance at least one monolayer thick chemisorbed on the nucleation layer, and forming a layer of a second substance at least one monolayer thick chemisorbed on the first substance. The chemisorption product of the first and second substance may include silicon and nitrogen. The nucleation layer may comprise silicon nitride. Further, a deposition method may include forming a first part of a nucleation layer on a first surface of a substrate and forming a second part of a nucleation layer on a second surface of the substrate. A deposition layer may be formed on the first and second parts of the nucleation layer substantially non-selectively on the first part of the nucleation layer compared to the second part. The first surface may be a surface of a borophosphosilicate glass layer. The second surface may be a surface of a rugged polysilicon layer.
    Type: Application
    Filed: November 18, 2002
    Publication date: April 17, 2003
    Inventor: Garry A. Mercaldi
  • Patent number: 6541811
    Abstract: A semiconductor structure includes a dielectric layer having first and second opposing sides. A conductive layer is adjacent to the first side of the dielectric layer and is coupled to a first terminal, and a conductive barrier layer is adjacent to the second side of the dielectric layer and is coupled to a second terminal. The conductive barrier layer may be formed from tungsten nitride, tungsten silicon nitride, titanium silicon nitride or other barrier materials.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: April 1, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Randhir P. S. Thakur, Garry A. Mercaldi, Michael Nuttall
  • Publication number: 20030043614
    Abstract: A structure and method for forming a magnetic memory having a number N of levels of magnetic memory cells by forming a plurality of levels of magnetic memory cells, each level including at least one magnetic memory core structure having first and second surfaces, forming a first access conductor connecting to the first surface, forming a second access conductor connecting to the second surface, wherein N+1 access conductors are formed per number N of levels of magnetic memory cells. The structure comprises a plurality of levels of magnetic memory cells, each level including at least one magnetic memory having a number N of levels of magnetic memory cells, including a magnetic memory core structure having first and second surfaces, the first and second surfaces each connecting to an individual access conductor, wherein N+1 access conductors are employed per number N of levels of magnetic memory cells.
    Type: Application
    Filed: October 22, 2002
    Publication date: March 6, 2003
    Inventor: Garry Mercaldi
  • Publication number: 20030036223
    Abstract: A semiconductor structure includes a dielectric layer having first and second opposing sides. A conductive layer is adjacent to the first side of the dielectric layer and is coupled to a first terminal, and a conductive barrier layer is adjacent to the second side of the dielectric layer and is coupled to a second terminal. The conductive barrier layer may be formed from tungsten nitride, tungsten silicon nitride, titanium silicon nitride or other barrier materials.
    Type: Application
    Filed: June 12, 2001
    Publication date: February 20, 2003
    Inventors: Randhir P.S. Thakur, Garry A. Mercaldi, Michael Nuttall
  • Patent number: 6521945
    Abstract: A dielectric insulating composite for insulating a floating gate from a control gate in a non-volatile memory is described. A material, such as an undoped polysilicon, amorphous silicon, or amorphous polysilicon or a silicon rich nitride, is inserted in the gate structure. The oxide film that results from the oxidation of these films is relatively free from impurities. As a result, charge leakage between the floating gate and control gate is reduced.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: February 18, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Michael Nuttall, Garry A. Mercaldi
  • Patent number: 6479854
    Abstract: A semiconductor structure includes a dielectric layer having first and second opposing sides. A conductive layer is adjacent to the first side of the dielectric layer and is coupled to a first terminal, and a conductive barrier layer is adjacent to the second side of the dielectric layer and is coupled to a second terminal. The conductive barrier layer may be formed from tungsten nitride, tungsten silicon nitride, titanium silicon nitride or other barrier materials.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: November 12, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Randhir P. S. Thakur, Garry A. Mercaldi, Michael Nuttall
  • Patent number: 6473328
    Abstract: A structure and method for forming a magnetic memory having a number N of levels of magnetic memory cells by forming a plurality of levels of magnetic memory cells, each level including at least one magnetic memory core structure having first and second surfaces, forming a first access conductor connecting to the first surface, forming a second access conductor connecting to the second surface, wherein N+1 access conductors are formed per number N of levels of magnetic memory cells. The structure comprises a plurality of levels of magnetic memory cells, each level including at least one magnetic memory having a number N of levels of magnetic memory cells, including a magnetic memory core structure having first and second surfaces, the first and second surfaces each connecting to an individual access conductor, wherein N+1 access conductors are employed per number N of levels of magnetic memory cells.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: October 29, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Garry Mercaldi
  • Publication number: 20020100931
    Abstract: A dielectric insulating composite for insulating a floating gate from a control gate in a non-volatile memory is described. A material, such as an undoped polysilicon, amorphous silicon, or amorphous polysilicon or a silicon rich nitride, is inserted in the gate structure. The oxide film that results from the oxidation of these films is relatively free from impurities. As a result, charge leakage between the floating gate and control gate is reduced.
    Type: Application
    Filed: January 30, 2002
    Publication date: August 1, 2002
    Applicant: Micron Technology, Inc.
    Inventors: Michael Nuttall, Garry A. Mercaldi
  • Publication number: 20020093063
    Abstract: A dielectric insulating composite for insulating a floating gate from a control gate in a non-volatile memory is described. A material, such as an undoped polysilicon, amorphous silicon, or amorphous polysilicon or a silicon rich nitride, is inserted in the gate structure. The oxide film that results from the oxidation of these films is relatively free from impurities. As a result, charge leakage between the floating gate and control gate is reduced.
    Type: Application
    Filed: January 30, 2002
    Publication date: July 18, 2002
    Applicant: Micron Technology, Inc.
    Inventors: Michael Nuttall, Garry A. Mercaldi