Patents by Inventor Gary G. Leisk

Gary G. Leisk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140378661
    Abstract: The present disclosure provides methods for fabricating various regenerated silk geometries using temperature control. In addition to temperature control, mechanical processing can be used to enhance properties of the fabricated article. The present disclosure also provides silk foam and paper-like materials molded using freezer processing.
    Type: Application
    Filed: April 20, 2012
    Publication date: December 25, 2014
    Applicant: TRUSTEES OF TUFTS COLLEGE
    Inventors: Tim Jia-Ching Lo, Gary G. Leisk, Lei Li, David L. Kaplan
  • Publication number: 20140314817
    Abstract: The inventions provided herein relate to compositions, methods, delivery devices and kits for repairing or augmenting a tissue in a subject. The compositions described herein can be injectable such that they can be placed in a tissue to be treated with a minimally-invasive procedure (e.g., by injection). In some embodiments, the composition described herein comprises a compressed silk fibroin matrix, which can expand upon injection into the tissue and retain its original expanded volume within the tissue for a period of time. The compositions can be used as a filler to replace a tissue void, e.g., for tissue repair and/or augmentation, or as a scaffold to support tissue regeneration and/or reconstruction. In some embodiments, the compositions described herein can be used for soft tissue repair or augmentation.
    Type: Application
    Filed: November 9, 2012
    Publication date: October 23, 2014
    Inventors: Gary G. Leisk, Tim Jia-Ching Lo, Lei Li, Evangelia Bellas, David L. Kaplan
  • Publication number: 20140303346
    Abstract: This invention provides for a process of rapidly forming silk fibroin gelation through ultrasonication. Under the appropriate conditions, gelation can be controlled to occur within two hours after the ultrasonication treatment. Biological materials, including viable cells, or therapeutic agents can be encapsulated in the hydrogels formed from the process and be used as delivery vehicles.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 9, 2014
    Applicant: TRUSTEES OF TUFTS COLLEGE
    Inventors: Xiaoqin Wang, Jon Kluge, Gary G. Leisk, David L. Kaplan
  • Publication number: 20140134240
    Abstract: This invention provides for compositions, methods and devices for rapidly converting silk fibroin solution into a silk fibroin gel using direct application of voltage, in a process called electrogelation. The silk fibroin gel may be reversibly converted back to liquid form by applying reverse voltage or may be converted further to ?-sheet structure by applying shear force or other treatments. The electrogelated silk may be used as an extracted bulk gel, spray or stream of gel for processing into materials or devices, or may be used as silk gel coating to devices. Active agents may be embedded in the silk gel for various medical applications. This invention also provides for methods and compositions for preparing adhesive silk pH-gels. For example, the method comprises reducing pH level of a silk fibroin solution to increase the bulk or local proton concentration of the silk fibroin solution, thereby forming adhesive silk gels.
    Type: Application
    Filed: July 2, 2013
    Publication date: May 15, 2014
    Inventors: David L. Kaplan, Tuna Yucel, Tim Jia-Ching Lo, Gary G. Leisk
  • Patent number: 8722067
    Abstract: This invention provides for a process of rapidly forming silk fibroin gelation through ultrasonication. Under the appropriate conditions, gelation can be controlled to occur within two hours after the ultrasonication treatment. Biological materials, including viable cells, or therapeutic agents can be encapsulated in the hydrogels formed from the process and be used as delivery vehicles.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: May 13, 2014
    Assignee: Trustees of Tufts College
    Inventors: Xiaoqin Wang, Jon Kluge, Gary G. Leisk, David L. Kaplan
  • Patent number: 8501172
    Abstract: This invention provides for compositions, methods and devices for rapidly converting silk fibroin solution into a silk fibroin gel using direct application of voltage, in a process called electrogelation. The silk fibroin gel may be reversibly converted back to liquid form by applying reverse voltage or may be converted further to ?-sheet structure by applying shear force or other treatments. The electrogelated silk may be used as an extracted bulk gel, spray or stream of gel for processing into materials or devices, or may be used as silk gel coating to devices. Active agents may be embedded in the silk gel for various medical applications. This invention also provides for methods and compositions for preparing adhesive silk pH-gels. For example, the method comprises reducing pH level of a silk fibroin solution to increase the bulk or local proton concentration of the silk fibroin solution, thereby forming adhesive silk gels.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: August 6, 2013
    Assignee: Trustees of Tufts College
    Inventors: David L. Kaplan, Tuna Yucel, Tim Jia-Ching Lo, Gary G. Leisk
  • Publication number: 20130060008
    Abstract: This invention provides for a process of rapidly forming silk fibroin gelation through ultrasonication. Under the appropriate conditions, gelation can be controlled to occur within two hours after the ultrasonication treatment. Biological materials, including viable cells, or therapeutic agents can be encapsulated in the hydrogels formed from the process and be used as delivery vehicles.
    Type: Application
    Filed: April 27, 2012
    Publication date: March 7, 2013
    Applicant: TRUSTEES OF TUFTS COLLEGE
    Inventors: Xiaoqin Wang, Jon Kluge, Gary G. Leisk, David L. Kaplan
  • Publication number: 20120244143
    Abstract: The present invention relates to compositions and method for drawing egel silk fibroin fibers. The resulting fibers can transmit light and hence can be used as optical fiber. Silk fibroin fiber is produced by a method comprising applying an electric field to a solubilized silk fibroin solution to create a silk fibroin gel; converting the silk fibroin gel to a viscous silk liquid; and drawing a silk fiber from the viscous silk liquid. The silk fiber of the invention can be used in materials such as textile, medical sutures, and tissue materials, as well as conferring optical properties into these materials.
    Type: Application
    Filed: September 28, 2010
    Publication date: September 27, 2012
    Applicant: Trustees of Tufts College
    Inventors: Tim Jia-Ching Lo, Gary G. Leisk, David L. Kaplan
  • Patent number: 8187616
    Abstract: This invention provides for a process of rapidly forming silk fibroin gelation through ultrasonication. Under the appropriate conditions, gelation can be controlled to occur within two hours after the ultrasonication treatment. Biological materials, including viable cells, or therapeutic agents can be encapsulated in the hydrogels formed from the process and be used as delivery vehicles.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: May 29, 2012
    Assignee: Trustees of Tufts College
    Inventors: Xiaoqin Wang, Jon Kluge, Gary G. Leisk, David L. Kaplan
  • Publication number: 20110171239
    Abstract: This invention provides for compositions, methods and devices for rapidly converting silk fibroin solution into a silk fibroin gel using direct application of voltage, in a process called electrogelation. The silk fibroin gel may be reversibly converted back to liquid form by applying reverse voltage or may be converted further to ?-sheet structure by applying shear force or other treatments. The electrogelated silk may be used as an extracted bulk gel, spray or stream of gel for processing into materials or devices, or may be used as silk gel coating to devices. Active agents may be embedded in the silk gel for various medical applications. This invention also provides for methods and compositions for preparing adhesive silk pH-gels. For example, the method comprises reducing pH level of a silk fibroin solution to increase the bulk or local proton concentration of the silk fibroin solution, thereby forming adhesive silk gels.
    Type: Application
    Filed: December 21, 2010
    Publication date: July 14, 2011
    Applicant: TRUSTEES OF TUFTS COLLEGE
    Inventors: David L. Kaplan, Tuna Yucel, Tim Jia-Ching Lo, Gary G. Leisk
  • Publication number: 20100178304
    Abstract: This invention provides for a process of rapidly forming silk fibroin gelation through ultrasonication. Under the appropriate conditions, gelation can be controlled to occur within two hours after the ultrasonication treatment. Biological materials, including viable cells, or therapeutic agents can be encapsulated in the hydrogels formed from the process and be used as delivery vehicles.
    Type: Application
    Filed: May 29, 2008
    Publication date: July 15, 2010
    Applicant: TRUSTEES OF TUFTS COLLEGE
    Inventors: Xiaoqin Wang, Jon Kluge, Gary G. Leisk, David L. Kaplan
  • Publication number: 20100120006
    Abstract: The disclosed invention contemplates a device and method related to training medical personnel (i.e., for example, surgeons) to perform endoscopic procedures. The disclosed technology solves two problems currently present in the art of using surgical simulators. The first improvement provides a dynamic training program, rather than a program that is the same for every training run. In one embodiment, the device provides a target array that can change position in three dimensions during the training session. In one embodiment, the target array can also change position at various velocities. Consequently, the present invention provides improved discrimination between evaluating innate skill of hand-eye coordination versus surgical skill.
    Type: Application
    Filed: September 14, 2007
    Publication date: May 13, 2010
    Inventors: Audrey Bell, Jacqueline Johanas, Matthew Saide, Caroline Cao, Gary G. Leisk, Steven Schwaitzberg