Patents by Inventor Gary Nelson

Gary Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210138185
    Abstract: The present disclosure pertains to automatically predicting a slow wave response of a subject to sensory stimulation during a sleep session. The sensory stimulation may be delivered to the subject upon detection of deep NREM sleep. The sensory stimulation may be auditory, haptic, visual, or other stimulation. The system delivers stimulation to the subject in blocks of stimulation separated from one another be intra-block intervals. The blocks are separated from each other by inter-block stimulations. The system compares the stimulated slow wave activity of the subject to the unstimulated slow wave activity of the subject. The system may update the stimulation parameters based on the comparison and deliver a subsequent block stimulation. Once the comparison indicates that the stimulated slow wave activity is significantly different from the unstimulated slow wave activity, the system may apply continuous fixed sensory stimulation to the user according to the most recent stimulation parameters.
    Type: Application
    Filed: November 6, 2020
    Publication date: May 13, 2021
    Inventor: Gary Nelson GARCIA MOLINA
  • Publication number: 20210137885
    Abstract: Polymorph forms of 4-trifluoromethyl-N-(3,3a,4,4a,5,5a,6,6a-octahydro-1,3-dioxo-4,6-ethenocycloprop[f]isoindol-2(1H)-yl)-benzamide are disclosed as well as their methods of synthesis and pharmaceutical compositions.
    Type: Application
    Filed: December 29, 2020
    Publication date: May 13, 2021
    Applicant: Siga Technologies, Inc.
    Inventors: Shanthakumar R. TYAVANAGIMATT, Melialani A.C.L.S. ANDERSON, William C. WEIMERS, Dylan NELSON, Tove' C. BOLKEN, Dennis E. HRUBY, Michael H. O'NEILL, Gary SWEETAPPLE, Kelley A. McCLOUGHAN
  • Publication number: 20210128867
    Abstract: The present disclosure pertains to a system and method for determining whether a subject is likely to be disturbed by therapy levels of stimulation provided to the subject during sleep sessions. The present system is configured to automatically identify sensitive users using electroencephalogram (EEG) information from a reference sleep session with or without stimulation. For reference sleep sessions without stimulation, the alpha activity in detected deep sleep is used to predict whether the subject is likely to be disturbed by therapy levels of stimulation. For reference sleep sessions with stimulation, the acute increase in EEG delta (e.g., 0.5-4 Hz) power and/or an arousability index are used to predict whether the subject is likely to be disturbed by therapy levels of stimulation.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 6, 2021
    Inventors: Gary Nelson GARCIA MOLINA, Surya Subrahmanya Sreeram VISSAPRAGADA VENKATA SATYA, Stefan PFUNDTNER, Tsvetomira Kirova TSONEVA, Anandi MAHADEVAN
  • Patent number: 10994092
    Abstract: The present disclosure pertains to a system configured to adjust an intensity of sensory stimulation delivered to a subject during a sleep session based on sleep depth in the subject during the sleep session. The restorative value of sleep may be increased by enhancing sleep slow-waves using sensory stimulation. The stimulation may be applied at an appropriate timing and/or intensity to enhance sleep slow-waves to enhance slow-waves without disturbing sleep.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: May 4, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gary Nelson Garcia Molina, Anandi Mahadevan, Surya Subrahmanya Sreeram Vissapragada Venkata Satya, John Gerthoffer
  • Publication number: 20210121657
    Abstract: A method is provided for measuring a wake up indicator, where the wake up indicator gives the likelihood of a user waking up undesirably. It is based on the knowledge that waking up during deep NREM sleep is not desirable due to sleep inertia and on the recognition that it is also undesirable to wake up during REM sleep due to atonia. A sleep inertia estimation is determined to estimate if the user is in NREM sleep and an atonia estimation is determined to estimate if the user is in REM sleep. The wake up indicator is determined from the sleep inertia estimation and the atonia estimation. The wake up indicator thus may be used as an indicator for the time when it is suitable to wake up the user in a way which avoids arousal from a deep sleep state or from REM sleep, during which atonia may arise.
    Type: Application
    Filed: October 28, 2020
    Publication date: April 29, 2021
    Inventors: Tsvetomira Kirova TSONEVA, Gary Nelson GARCIA MOLINA, Xia CHEN
  • Patent number: 10939866
    Abstract: The present disclosure pertains to a system and method for determining sleep onset latency in a subject. The system is configured to generate output signals conveying information related to brain activity in the subject, determine sleep stages of the subject based on the output signals, determine a sleep onset moment in the subject based on the determined sleep stages, determine a sleep intention moment for the subject by: (i) detecting eye blinks in the subject based on the output signals, and determining the sleep intention moment responsive to the detected eye blinks ceasing for a predetermined period of time; and/or (ii) determining whether brain activity power in a target frequency band has breached a threshold power level based on the output signals, and determining the sleep intention moment responsive to a breach; and determine the sleep onset latency based on the sleep onset moment and the sleep intention moment.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: March 9, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Tsvetomira Kirova Tsoneva, Gary Nelson Garcia Molina
  • Patent number: 10933419
    Abstract: A pipetting reservoir kit includes a base, a disposable liner, and a lid. The disposable liner includes anti-vacuum channels on the bottom wall to prevent a pipette tip vacuum engaging the wall during aspiration. The groupings of anti-vacuum channels located on the bottom surface of the liner face upward into the basin that holds liquid samples or reagents. The groupings of anti-vacuum channels are spaced in an array 4.5 mm apart for a 384 pipetting head and 9 mm apart for a 96 pipetting head. The anti-vacuum channels also lower the required working volume for the liner and reduce liquid waste.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: March 2, 2021
    Assignee: Integra Biosciences AG
    Inventors: Terrence Kelly, Jonathan Harkins, George Kalmakis, Gary Nelson
  • Publication number: 20200305753
    Abstract: A system for delivering sensory stimulation a sensor; a sensory stimulator configured to deliver sensory stimulation to a patient during a sleep session, the sensory stimulation having varying stimulation intensity levels; and a computer system. One or more physical processors being programmed with computer program instructions which, when executed cause the computer system to: determine sleep stage information of the patient based on brain activity information of the patient during the sleep session from the sensor; provide input to the sensory stimulator based on the determined sleep stage information of the patient, the provided input causing the sensory stimulator to deliver the sensory stimulation to the patient; obtain stimulation response information from the patient, the stimulation response information including patient brain response to the delivered sensory stimulation; and determine a range of the stimulation intensity levels within which the patient brain response reaches a threshold.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Inventors: Tsvetomira Kirova TSONEVA, Gary Nelson GARCIA MOLINA, Stefan PFUNDTNER, Sander Theodoor PASTOOR
  • Publication number: 20200306494
    Abstract: Typically, high NREM stage N3 sleep detection accuracy is achieved using a frontal electrode referenced to an electrode at a distant location on the head (e.g., the mastoid, or the earlobe). For comfort and design considerations it is more convenient to have active and reference electrodes closely positioned on the frontal region of the head. This configuration, however, significantly attenuates the signal, which degrades sleep stage detection (e.g., N3) performance. The present disclosure describes a deep neural network (DNN) based solution developed to detect sleep using frontal electrodes only. N3 detection is enhanced through post-processing of the soft DNN outputs. Detection of slow-waves and sleep micro-arousals is accomplished using frequency domain thresholds. Volume modulation uses a high-frequency/low-frequency spectral ratio extracted from the frontal signal.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Inventors: Gary Nelson Garcia MOLINA, Ulf GROSSEKATHĂ–FER, Stojan TRAJANOVSKI, Jesse SALAZAR, Tsvetomira Kirova TSONEVA, Sander Theodoor PASTOOR, Antonio AQUINO, Adrienne HEINRICH, Birpal Singh SACHDEV
  • Publication number: 20200306495
    Abstract: A system for delivering sensory stimulation comprises a sensor configured to measure brain activity information of a patient during a sleep session; a sensory stimulator configured to deliver sensory simulation to the patient during the sleep session; and a computer system. One or more physical processors are programmed with computer program instructions which, when executed cause the computer system to: determine a first stimulation profile, a second stimulation profile, or a combination stimulation profile thereof based on obtained sleep cycle information and/or obtained cognitive domain information; and provide input to the sensory stimulator based on the determined stimulation profile, the provided input causing the sensory stimulator to deliver the sensory simulations to the patient based on the determined stimulation profile during the detected slow wave sleep in the patient.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Inventors: Gary Nelson GARCIA MOLINA, Jesse SALAZAR, Surya Subrahmanya Sreeram VISSAPRAGADA VENKATA SATYA, Antonio AQUINO, Birpal Singh SACHDEV
  • Patent number: 10786174
    Abstract: The present disclosure pertains to a system configured to adjust an intensity of sensory stimulation delivered to a subject during a sleep session based on sleep spindles in the subject during the sleep session. The system is configured to adjust the intensity of the stimulation based on a sleep spindle frequency and/or a sleep spindle density. The system is configured to determine a recent spindle density and/or a recent spindle frequency for a recent period of time during the sleep session based on detected sleep spindles, and to determine a previous spindle density and/or a previous spindle frequency for a previous period of time during the sleep session based on the detected sleep spindles. The system controls the intensity of sensory stimulation provided to the subject based on a comparison of the previous spindle density to the recent spindle density and/or the previous spindle frequency to the recent spindle frequency.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: September 29, 2020
    Assignees: KONINKLIJKE PHILIPS N.V., WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Gary Nelson Garcia Molina, Michele Bellesi, Stefan Pfundtner, Brady Alexander Riedner, Giulio Tononi
  • Patent number: 10729875
    Abstract: The present disclosure describes a system configured to adjust the duration of individual sensory stimuli provided to a subject. The system is configured to determine a current amount of slow wave activity in the subject, responsive to the subject being presently in slow wave sleep, control one or more sensory stimulators to provide the individual sensory stimuli to the subject, determine habituation of the subject to the individual sensory stimuli and, responsive to the slow wave activity in the subject for a period of time following the providing of the individual sensory stimuli showing habituation, adjust the duration of the individual sensory stimuli.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: August 4, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Alexander Cornelis Geerlings, Gary Nelson Garcia Molina, Stefan Pfundtner
  • Publication number: 20200237261
    Abstract: The invention relates to a method and an apparatus for the detection of the body position, especially while sleeping. More particularly, the invention relates to how the main body positions during sleep can be derived from the distribution of the reflection of a projected IR light from a subject's body under a blanket. Additionally, the breathing signals can be analyzed to determine the body posture.
    Type: Application
    Filed: April 17, 2020
    Publication date: July 30, 2020
    Inventors: Adrienne HEINRICH, Henriette Christine VAN VUGT, Rene Martinus Maria DERKX, Gary Nelson GARCIA MOLINA, Jia DU
  • Publication number: 20200205728
    Abstract: The present disclosure pertains to optimizing sleep score parameters. In one embodiment, a first set of vectors is obtained, where each vector includes parameter values of sleep-related parameters for calculating a sleep score. For each vector of the first set, a correlation value indicating a degree of a correlation between the vector and a user-indicated sleep score associated with a set of parameter values representative of a sleep metric of the user is determined. A second set of vectors is generated based on a first subset and a second subset of the first set of vectors satisfying a first and second criteria, respectively. A correlation value associated with each vector of the second set is determined. For each sleep-related parameter, a parameter value of a given vector of the second set is assigned based on the correlation values associated with the second set.
    Type: Application
    Filed: December 23, 2019
    Publication date: July 2, 2020
    Inventor: Gary Nelson Garcia MOLINA
  • Patent number: D890605
    Type: Grant
    Filed: June 16, 2019
    Date of Patent: July 21, 2020
    Assignee: American Greetings Corporation
    Inventor: Gary Nelson
  • Patent number: D904869
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: December 15, 2020
    Assignee: American Greetings Corporation
    Inventors: Gary Nelson, Beth Dinvald
  • Patent number: D905655
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: December 22, 2020
    Assignee: American Greetings Corporation
    Inventors: David Mayer, April Nemeth, Gary Nelson, Allison Marsh, Katalina Speck, Dave Sapp, Sheila Coughlin, Charles Robert Kelly
  • Patent number: D908478
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: January 26, 2021
    Assignee: American Greetings Corporation
    Inventors: Gary Nelson, Terry Flores
  • Patent number: D909861
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: February 9, 2021
    Assignee: American Greetings Corporation
    Inventors: Gary Nelson, Terry Flores
  • Patent number: D917417
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: April 27, 2021
    Assignee: American Greetings Corporation
    Inventors: David Mayer, April Nemeth, Gary Nelson, Allison Marsh, Katalina Speck, Dave Sapp, Sheila Coughlin, Charles Robert Kelly