Patents by Inventor Gary S. Guthart

Gary S. Guthart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030083673
    Abstract: Robotic surgical tools, systems, and methods for preparing for and performing robotic surgery include a memory mounted on the tool. The memory can perform a number of functions when the tool is loaded on the tool manipulator: first, the memory can provide a signal verifying that the tool is compatible with that particular robotic system. Secondly, the tool memory may identify the tool-type to the robotic system so that the robotic system can reconfigure its programming. Thirdly, the memory of the tool may indicate tool-specific information, including measured calibration offsets indicating misalignment of the tool drive system, tool life data, or the like. This information may be stored in a read only memory (ROM), or in a nonvolatile memory which can be written to only a single time. The invention further provides improved engagement structures for coupling robotic surgical tools with manipulator structures.
    Type: Application
    Filed: December 10, 2002
    Publication date: May 1, 2003
    Applicant: Intuitive Surgical, Inc.
    Inventors: Michael J. Tierney, Thomas G. Cooper, Chris A. Julian, Stephen J. Blumenkranz, Gary S. Guthart, Robert G. Younge
  • Publication number: 20030060927
    Abstract: An input device for robotic surgery mechanically transmits a grip signal across a first joint coupling a handle to a linkage supporting the handle. The handle is removable and replaceable, allows unlimited rotation about the joint, and may optionally include a touch sensor to inhibit movement of a surgical end effector when the hand of the surgeon is not in contact with the handle.
    Type: Application
    Filed: September 25, 2001
    Publication date: March 27, 2003
    Applicant: INTUITIVE SURGICAL, INC.
    Inventors: Craig Richard Gerbi, Eugene F. Duval, Don Minami, Robert F. Hagen, J. Kenneth Salisbury, Akhil Madhani, John Stern, Gary S. Guthart
  • Publication number: 20030055410
    Abstract: A surgical system or assembly for performing cardiac surgery includes a surgical instrument; a servo-mechanical system engaged to the surgical instrument for operating the surgical instrument; and an attachment assembly for removing at least one degree of movement from a moving surgical cardiac worksite to produce a resultant surgical cardiac worksite. The surgical system or assembly also includes a motion tracking system for gathering movement information on a resultant surgical cardiac worksite. A control computer is engaged to the attachment assembly and to the motion tracking system and to the servo-mechanical system for controlling movement of the attachment assembly and for feeding gathered information to the servo-mechanical system for moving the surgical instrument in unison with the resultant surgical cardiac worksite such that a relative position of the moving surgical instrument with respect to the resultant surgical cardiac worksite is generally constant.
    Type: Application
    Filed: August 6, 2002
    Publication date: March 20, 2003
    Applicant: Intuitive Surgical, Inc.
    Inventors: Philip C. Evans, Frederic H. Moll, Gary S. Guthart, William C. Nowlin, Rand P. Pendleton, Christopher P. Wilson, Andris D. Ramans, David J. Rosa, Volkmar Falk, Robert G. Younge
  • Patent number: 6522906
    Abstract: Systems and methods for performing robotically-assisted surgical procedures on a patient enable an image display device to provide an operator with auxiliary information related to the surgical procedure, in addition to providing an image of the surgical site itself. The systems and methods allow an operator to selectively access and reference auxiliary information on the image display device during the performance of a surgical procedure.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: February 18, 2003
    Assignee: Intuitive Surgical, Inc.
    Inventors: J. Kenneth Salisbury, Jr., Gunter D. Niemeyer, Robert G. Younge, Gary S. Guthart, David S. Mintz, Thomas G. Cooper
  • Publication number: 20030023346
    Abstract: An input device for robotic surgical techniques and other applications has a handle supported by a linkage with a redundant degree of freedom, the joints being movable with at least one more degree of freedom than the handle. At least one joint of the linkage is actively driven to prevent the linkage from approaching singularities of the joint system, motion limits of the joints, or the like, and also to drive the linkage toward a freely articulatable configuration. A robotic master controller can include an arm assembly supporting a gimbal having a redundant linkage, with the arm primarily positioning the gimbal in a three dimensional controller workspace and the gimbal coupling the arm to the handle with four rotational degrees of freedom. One or more additional degrees of freedom may also be provided for actuation of the handle, for example, to close the jaws of a surgical grasper.
    Type: Application
    Filed: April 11, 2002
    Publication date: January 30, 2003
    Applicant: INTUITIVE SURGICAL, INC.
    Inventors: J. Kenneth Salisbury, Akhil J. Madhani, Gary S. Guthart, Gunter D. Niemeyer, Eugene F. Duval
  • Publication number: 20030013949
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Application
    Filed: November 3, 1999
    Publication date: January 16, 2003
    Inventors: FREDERIC H. MOLL, DAVID J. ROSA, ANDRIS D. RAMANS, STEVEN J. BLUMENKRANZ, GARY S. GUTHART, GUNTER D. NIEMEYER, WILLIAM C. NOWLIN, J. KENNETH SALISBURY, MICHAEL J. TIERNEY
  • Publication number: 20030004610
    Abstract: Enhanced telepresence and telesurgery systems automatically update coordinate transformations so as to retain alignment between movement of an input device and movement of an end effector as displayed adjacent the input device. A processor maps a controller workspace with an end effector workspace, and effects movement of the end effector in response to the movement of the input device. This allows the use of kinematically dissimilar master and slave linkages. Gripping an input member near a gimbal point and appropriate input member to end effector mapping points enhance the operator's control. Dexterity is enhanced by accurately tracking orientational and/or angles of movement, even if linear movement distances of the end effector do not correspond to those of the input device.
    Type: Application
    Filed: June 5, 2002
    Publication date: January 2, 2003
    Applicant: Intuitive Surgical, Inc.
    Inventors: Gunter D. Niemeyer, Gary S. Guthart, William C. Nowlin, Nitish Swarup, Gregory K. Toth, Robert G. Younge
  • Patent number: 6491701
    Abstract: Robotic surgical tools, systems, and methods for preparing for and performing robotic surgery include a memory mounted on the tool. The memory can perform a number of functions when the tool is loaded on the tool manipulator: first, the memory can provide a signal verifying that the tool is compatible with that particular robotic system. Secondly, the tool memory may identify the tool-type to the robotic system so that the robotic system can reconfigure its programming. Thirdly, the memory of the tool may indicate tool-specific information, including measured calibration offsets indicating misalignment of the tool drive system, tool life data, or the like. This information may be stored in a read only memory (ROM), or in a nonvolatile memory which can be written to only a single time. The invention further provides improved engagement structures for coupling robotic surgical tools with manipulator structures.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: December 10, 2002
    Assignee: Intuitive Surgical, Inc.
    Inventors: Michael J. Tierney, Thomas Cooper, Chris Julian, Stephen J. Blumenkranz, Gary S. Guthart, Robert G. Younge
  • Patent number: 6468265
    Abstract: A surgical system or assembly for performing cardiac surgery includes a surgical instrument; a servo-mechanical system engaged to the surgical instrument for operating the surgical instrument; and an attachment assembly for removing at least one degree of movement from a moving surgical cardiac worksite to produce a resultant surgical cardiac worksite. The surgical system or assembly also includes a motion tracking system for gathering movement information on a resultant surgical cardiac worksite. A control computer is engaged to the attachment assembly and to the motion tracking system and to the servo-mechanical system for controlling movement of the attachment assembly and for feeding gathered information to the servo-mechanical system for moving the surgical instrument in unison with the resultant surgical cardiac worksite such that a relative position of the moving surgical instrument with respect to the resultant surgical cardiac worksite is generally constant.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: October 22, 2002
    Assignee: Intuitive Surgical, Inc.
    Inventors: Philip C. Evans, Frederic H. Moll, Gary S. Guthart, William C. Nowlin, Rand P. Pendleton, Christopher P. Wilson, Andris D. Ramans, David J. Rosa, Volkmar Falk, Robert G. Younge
  • Patent number: 6459926
    Abstract: The invention provides robotic surgical systems which allow selectable independent repositioning of an input handle of a master controller and/or a surgical end effector without corresponding movement of the other. In some embodiments, independent repositioning is limited to translational degrees of freedom. In other embodiments, the system provides an input device adjacent a manipulator supporting the surgical instrument so that an assistant can reposition the instrument at the patient's side.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: October 1, 2002
    Assignee: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Gary S. Guthart, J. Kenneth Salisbury, Jr., Gunter D. Niemeyer
  • Publication number: 20020128552
    Abstract: The invention provides robotic surgical systems which allow selectable independent repositioning of an input handle of a master controller and/or a surgical end effector without corresponding movement of the other. In some embodiments, independent repositioning is limited to translational degrees of freedom. In other embodiments, the system provides an input device adjacent a manipulator supporting the surgical instrument so that an assistant can reposition the instrument at the patient's side.
    Type: Application
    Filed: January 15, 2002
    Publication date: September 12, 2002
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Gary S. Guthart, J. Kenneth Salisbury, Gunter D. Niemeyer
  • Publication number: 20020120363
    Abstract: The invention provides an input device for robotics surgical techniques and other applications. The input device has a handle supported by a linkage having joints with a redundant degree of freedom, with the joints being movable with at least one more degree of freedom than the handle. At least one joint of the linkage is actively driven to prevent the linkage from approaching singularities of the joint system, motion limits of the joints, or the like, and also to drive the linkage toward a freely articulative configuration. In one embodiment, a robotic master controller includes an arm assembly supporting a gimbal having such a redundant linkage, with the arm primarily positioning the gimbal in a three dimensional controller workspace and the gimbal coupling the arm to the handle with four rotational degrees of freedom. One or more additional degrees of freedom may also be provided for actuation of the handle, for example, to close the jaws of a surgical grasper.
    Type: Application
    Filed: September 17, 1999
    Publication date: August 29, 2002
    Inventors: J. KENNETH SALISBURY, AKHIL J. MADHANI, GARY S. GUTHART, GUNTER NIEMEYER, EUGENE F. DUVAL
  • Patent number: 6424885
    Abstract: Enhanced telepresence and telesurgery systems automatically update coordinate transformations so as to retain alignment between movement of an input device and movement of an end effector as displayed adjacent the input device. A processor maps a controller workspace with an end effector workspace, and effects movement of the end effector in response to the movement of the input device. This allows the use of kinematically dissimilar master and slave linkages. Gripping an input member near a gimbal point and appropriate input member to end effector mapping points enhance the operator's control. Dexterity is enhanced by accurately tracking orientational and/or angles of movement, even if linear movement distances of the end effector do not correspond to those of the input device.
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: July 23, 2002
    Assignee: Intuitive Surgical, Inc.
    Inventors: Gunter D. Niemeyer, Gary S. Guthart, William C. Nowlin, Nitish Swarup, Gregory K. Toth, Robert G. Younge
  • Publication number: 20020082612
    Abstract: Improved robotic surgical systems, devices, and methods often include a first assembly with a surgical end effector supported and manipulated relative to a first base by a first robotic linkage, while a second surgical end effector manipulated and supported relative to a second, independent base by a second robotic linkage. One or more of these robotic assemblies may be moved relative to the other. To coordinate the end effector movements with those of input devices being manipulated by a surgeon relative to a display of a surgical worksite, the processor deriving the commands for movement of the robotic linkages may make use of a signal indicating a relative orientation of the bases of the robotic arm assemblies. Surprisingly, the robotic arm assemblies may not transmit signals to the processor indicating a relative translational position of the bases.
    Type: Application
    Filed: October 5, 2001
    Publication date: June 27, 2002
    Applicant: Intuitive Surgical, Inc.
    Inventors: Frederic H. Moll, David J. Rose, Andris D. Ramans, Stephen J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Michael J. Tierney
  • Publication number: 20020072736
    Abstract: Robotic surgical tools, systems, and methods for preparing for and performing robotic surgery include a memory mounted on the tool. The memory can perform a number of functions when the tool is loaded on the tool manipulator: first, the memory can provide a signal verifying that the tool is compatible with that particular robotic system. Secondly, the tool memory may identify the tool-type to the robotic system so that the robotic system can reconfigure its programming. Thirdly, the memory of the tool may indicate tool-specific information, including measured calibration offsets indicating misalignment of the tool drive system, tool life data, or the like. This information may be stored in a read only memory (ROM), or in a nonvolatile memory which can be written to only a single time. The invention further provides improved engagement structures for coupling robotic surgical tools with manipulator structures.
    Type: Application
    Filed: August 13, 2001
    Publication date: June 13, 2002
    Applicant: INTUITIVE SURGICAL, INC.
    Inventors: Michael J. Tierney, Thomas Cooper, Chris Julian, Stephen J. Blumenkranz, Gary S. Guthart, Robert C. Younge
  • Publication number: 20020055795
    Abstract: This invention relates to establishing alignment or a desired orientational relationship between a master and a slave of a telerobotic system. The invention can advantageously be used in a surgical apparatus. A method of establishing a desired orientational relationship between a hand-held part of a master control and an end effector of an associated slave as viewed in an image displayed on a viewer is provided. The method includes causing the end effector to remain stationary, determining a current orientation of the end effector relative to a viewing end of an image capturing device operatively associated with the viewer and determining a desired corresponding orientation of the hand-held part of the master control relative to the viewer, at which orientation the desired orientational relationship between the hand-held part of the master control and the end effector would be established.
    Type: Application
    Filed: December 28, 2001
    Publication date: May 9, 2002
    Applicant: Intuitive Surgical, Inc.
    Inventors: Gunter D. Niemeyer, William C. Nowlin, Gary S. Guthart
  • Patent number: 6364888
    Abstract: This invention relates to establishing alignment or a desired orientational relationship between a master and a slave of a telerobotic system. The invention can advantageously be used in a surgical apparatus. A method of establishing a desired orientational relationship between a hand-held part of a master control and an end effector of an associated slave as viewed in an image displayed on a viewer is provided. The method includes causing the end effector to remain stationary, determining a current orientation of the end effector relative to a viewing end of an image capturing device operatively associated with the viewer and determining a desired corresponding orientation of the hand-held part of the master control relative to the viewer, at which orientation the desired orientational relationship between the hand-held part of the master control and the end effector would be established.
    Type: Grant
    Filed: April 7, 1999
    Date of Patent: April 2, 2002
    Assignee: Intuitive Surgical, Inc.
    Inventors: Gunter D. Niemeyer, William C. Nowlin, Gary S. Guthart
  • Publication number: 20020032452
    Abstract: Robotic surgical tools, systems, and methods for preparing for and performing robotic surgery include a memory mounted on the tool. The memory can perform a number of functions when the tool is loaded on the tool manipulator: first, the memory can provide a signal verifying that the tool is compatible with that particular robotic system. Secondly, the tool memory may identify the tool-type to the robotic system so that the robotic system can reconfigure its programming. Thirdly, the memory of the tool may indicate tool-specific information, including measured calibration offsets indicating misalignment of the tool drive system, tool life data, or the like. This information may be stored in a read only memory (ROM), or in a nonvolatile memory which can be written to only a single time. The invention further provides improved engagement structures for coupling robotic surgical tools with manipulator structures.
    Type: Application
    Filed: August 13, 2001
    Publication date: March 14, 2002
    Inventors: Michael J. Tierney, Thomas Cooper, Chris Julian, Stephen J. Blumenkranz, Gary S. Guthart, Robert G. Younge
  • Publication number: 20020032451
    Abstract: Robotic surgical tools, systems, and methods for preparing for and performing robotic surgery include a memory mounted on the tool. The memory can perform a number of functions when the tool is loaded on the tool manipulator: first, the memory can provide a signal verifying that the tool is compatible with that particular robotic system. Secondly, the tool memory may identify the tool-type to the robotic system so that the robotic system can reconfigure its programming. Thirdly, the memory of the tool may indicate tool-specific information, including measured calibration offsets indicating misalignment of the tool drive system, tool life data, or the like. This information may be stored in a read only memory (ROM), or in a nonvolatile memory which can be written to only a single time. The invention further provides improved engagement structures for coupling robotic surgical tools with manipulator structures.
    Type: Application
    Filed: January 12, 2001
    Publication date: March 14, 2002
    Applicant: INTUITIVE SURGICAL, INC.
    Inventors: Michael J. Tierney, Thomas G. Cooper, Chris A. Julian, Stephen J. Blumenkranz, Gary S. Guthart, Robert G. Younge
  • Patent number: 6331181
    Abstract: Robotic surgical tools, systems, and methods for preparing for and performing robotic surgery include a memory mounted on the tool. The memory can perform a number of functions when the tool is loaded on the tool manipulator: first, the memory can provide a signal verifying that the tool is compatible with that particular robotic system. Secondly, the tool memory may identify the tool-type to the robotic system so that the robotic system can reconfigure its programming. Thirdly, the memory of the tool may indicate tool-specific information, including measured calibration offsets indicating misalignment of the tool drive system, tool life data, or the like. This information may be stored in a read only memory (ROM), or in a nonvolatile memory which can be written to only a single time. The invention further provides improved engagement structures for coupling robotic surgical tools with manipulator structures.
    Type: Grant
    Filed: October 15, 1999
    Date of Patent: December 18, 2001
    Assignee: Intuitive Surgical, Inc.
    Inventors: Michael J. Tierney, Thomas G. Cooper, Chris A. Julian, Stephen J. Blumenkranz, Gary S. Guthart, Robert G. Younge