Patents by Inventor Gary Yama

Gary Yama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080122020
    Abstract: There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. An embodiment further includes location of a piezoelectric material as part of a semiconductor sensing structure. The semiconductor sensing structure, in conjunction with the piezoelectric material, can be used as a sensing device to provide an output signal associated with a sensed event.
    Type: Application
    Filed: November 7, 2006
    Publication date: May 29, 2008
    Inventors: Matthias Metz, Zhiyu Pan, Brian Stark, Markus Ulm, Gary Yama
  • Publication number: 20080053228
    Abstract: A tri-axis accelerometer includes a proof mass, at least four anchor points arranged in at least two opposite pairs, a first pair of anchor points being arranged opposite one another along a first axis, a second pair of anchor points being arranged opposite one another along a second axis, the first axis and the second axis being perpendicular to one another, and at least four spring units to connect the proof mass to the at least four anchor points, the spring units each including a pair of identical springs, each spring including a sensing unit.
    Type: Application
    Filed: August 30, 2006
    Publication date: March 6, 2008
    Inventors: Zhiyu Pan, Christoph Lang, Gary Yama, Matthias Metz, Markus Ulm
  • Publication number: 20080041155
    Abstract: A dual-axis tuning fork gyroscope includes four open-ended tuning forks arranged coplanarly in two opposite pairs, a first pair of open-ended tuning forks being arranged opposite one another along a first axis, a second pair of open-ended tuning forks being arranged opposite one another along a second axis, the first axis and the second axis being perpendicular to one another. The four open-ended tuning forks are mechanically coupled together so that all four tuning forks vibrate in the same manner in terms of frequency and phase.
    Type: Application
    Filed: August 18, 2006
    Publication date: February 21, 2008
    Inventors: Zhiyu Pan, Christoph Lang, Gary Yama
  • Patent number: 7319372
    Abstract: There are many inventions described and illustrated herein, as well as many aspects and embodiments of those inventions. In one aspect, the present invention is directed to a resonator architecture including a plurality of in-plane vibration microelectromechanical resonators (for example, 2 or 4 resonators) that are mechanically coupled to provide, for example, a differential signal output. In one embodiment, the present invention includes four commonly shaped microelectromechanical tuning fork resonators (for example, tuning fork resonators having two or more rectangular-shaped or square-shaped tines). Each resonator is mechanically coupled to another resonator of the architecture. For example, each resonator of the architecture is mechanically coupled to another one of the resonators on one side or a corner of one of the sides. In this way, all of the resonators, when induced, vibrate at the same frequency.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: January 15, 2008
    Assignees: Board of Trustees of the Leland Standford Junior University, Robert Bosch GmbH
    Inventors: Zhiyu Pan, Rob Norris Candler, Markus Lutz, Aaron Partridge, Volker Materna, Gary Yama, Wilhelm Frey
  • Publication number: 20070042521
    Abstract: There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. An embodiment further includes a buried polysilicon layer and a “protective layer” deposited over the buried polysilicon layer to prevent possible erosion of, or damage to the buried polysilicon layer during processing steps. The material that encapsulates the mechanical structures, when deposited, includes one or more of the following attributes: low tensile stress, good step coverage, maintains its integrity when subjected to subsequent processing, does not significantly and/or adversely impact the performance characteristics of the mechanical structures in the chamber (if coated with the material during deposition), and/or facilitates integration with high-performance integrated circuits.
    Type: Application
    Filed: August 16, 2005
    Publication date: February 22, 2007
    Inventor: Gary Yama
  • Publication number: 20070013464
    Abstract: There are many inventions described and illustrated herein, as well as many aspects and embodiments of those inventions. In one aspect, the present invention is directed to a resonator architecture including a plurality of in-plane vibration microelectromechanical resonators (for example, 2 or 4 resonators) that are mechanically coupled to provide, for example, a differential signal output. In one embodiment, the present invention includes four commonly shaped microelectromechanical tuning fork resonators (for example, tuning fork resonators having two or more rectangular-shaped or square-shaped tines). Each resonator is mechanically coupled to another resonator of the architecture. For example, each resonator of the architecture is mechanically coupled to another one of the resonators on one side or a corner of one of the sides. In this way, all of the resonators, when induced, vibrate at the same frequency.
    Type: Application
    Filed: July 15, 2005
    Publication date: January 18, 2007
    Inventors: Zhiyu Pan, Rob Candler, Markus Lutz, Aaron Partridge, Volker Materna, Gary Yama, Wilhelm Frey
  • Publication number: 20060246631
    Abstract: A mechanical structure is disposed in a chamber, at least a portion of which is defined by the encapsulation structure. A first method provides a channel cap having at least one preform portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. A second method provides a channel cap having at least one portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. The at least one portion is fabricated apart from the electromechanical device and thereafter affixed to the electromechanical device. A third method provides a channel cap having at least one portion disposed over or in at least a portion of the anti-stiction channel to seal an anti-stiction channel, at least in part. The at least one portion may comprise a wire ball, a stud, metal foil or a solder preform. A device includes a substrate, an encapsulation structure and a mechanical structure.
    Type: Application
    Filed: April 27, 2005
    Publication date: November 2, 2006
    Inventors: Markus Lutz, Aaron Partridge, Wilhelm Frey, Markus Ulm, Matthias Metz, Brian Stark, Gary Yama
  • Publication number: 20050054134
    Abstract: A method for manufacturing a microsystem is provided, which microsystem has a first functional layer situated on a substrate provided with an integrated circuit, the first functional layer including a conductive area and a sub-layer, and a second mechanical functional layer situated on the first functional layer. In the manufacturing method, the second mechanical functional layer is first applied to a sacrificial layer situated on the first functional layer and structured. In addition, a protective layer is provided in selected areas on the side of sub-layer facing away from the conductive area, such that as the sacrificial layer is etched, etching of the areas of the first functional layer covered by the protective layer is prevented, and in the areas of the first functional layer without the protective layer, the sub-layer is selectively etched simultaneously with the sacrificial layer, down to the conductive area.
    Type: Application
    Filed: July 22, 2004
    Publication date: March 10, 2005
    Inventors: Wilhelm Frey, Silvia Kronmueller, Christoph Duenn, Gary Yama, Jochen Zoellin