Patents by Inventor Gaurav Menon

Gaurav Menon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10320093
    Abstract: In certain exemplary embodiments, register banks are used to allow for fast beam switching (FBS) in a phased array system. Specifically, each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be preprogrammed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Additionally or alternatively, active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: June 11, 2019
    Assignee: ANOKIWAVE, INC.
    Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
  • Patent number: 10263650
    Abstract: In some example implementations, there may be provided methods for beamforming calibration of active electronically steered arrays (AESA). In some implementations, one or more adders may generate a phase offset by adding phase calibration data from non-volatile memory and phase command data from static memory, and/or generate a gain offset by adding gain calibration data from the non-volatile memory and gain command data from the static memory. Further, a phase-shift circuit can modify, based on the phase offset, a phase of a first output signal, and an amplitude gain circuit can modify, based on the gain offset, an amplitude of the first output signal. In accordance with these implementations, the modified phase of the first output signal and the modified amplitude of the first output signal are provided to enable pre-calibration of the first output signal and/or a first antenna. Related systems, methods, and articles of manufacture are also described.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: April 16, 2019
    Assignee: ANOKIWAVE, INC.
    Inventors: David Warren Corman, Robert McMorrow, Andrew Street, Vipul Jain, Kristian Madsen, Robert Ian Gresham, Jonathan Comeau, Gaurav Menon, Nitin Jain
  • Publication number: 20190109101
    Abstract: A phased array has a laminar substrate, a plurality of elements on the laminar substrate forming a patch phased array, and integrated circuits on the laminar substrate. Each integrated circuit is a high frequency integrated circuit configured to control receipt and/or transmission of signals by the plurality of elements in the patch phased array. In addition, each integrated circuit has a substrate side coupled with the laminar substrate, and a back side. The phased array also has a plurality of heat sinks. Each integrated circuit is coupled with at least one of the heat sinks. At least one of the integrated circuits has a thermal interface material in conductive thermal contact with its back side. The thermal interface material thus is between the at least one integrated circuit and one of the heat sinks. Preferably, the thermal interface material has a magnetic loss tangent value of between 0.5 and 4.5.
    Type: Application
    Filed: October 5, 2018
    Publication date: April 11, 2019
    Inventors: Gaurav Menon, Jonathan P. Comeau, Nitin Jain
  • Publication number: 20190109364
    Abstract: An integrated circuit system has a die with first and second sides, and contains high frequency circuitry operating at mm-wave frequencies. The system also has a plurality of interfaces (on the first side) in electrical communication with the high frequency circuitry, and a heat sink having a bottom surface with a first region and an aperture region. The first region is in physical and conductive contact with the die, while the aperture region forms a concavity with an inner concave surface that is spaced from the die.
    Type: Application
    Filed: October 5, 2018
    Publication date: April 11, 2019
    Inventors: Gaurav Menon, Jonathan P. Comeau, Andrew Street, Scott Mitchell, Robert J. McMorrow, Christopher Jones
  • Publication number: 20180234121
    Abstract: In some example implementations, there may be provided methods for beamforming calibration of active electronically steered arrays (AESA). In some implementations, one or more adders may generate a phase offset by adding phase calibration data from non-volatile memory and phase command data from static memory, and/or generate a gain offset by adding gain calibration data from the non-volatile memory and gain command data from the static memory. Further, a phase-shift circuit can modify, based on the phase offset, a phase of a first output signal, and an amplitude gain circuit can modify, based on the gain offset, an amplitude of the first output signal. In accordance with these implementations, the modified phase of the first output signal and the modified amplitude of the first output signal are provided to enable pre-calibration of the first output signal and/or a first antenna. Related systems, methods, and articles of manufacture are also described.
    Type: Application
    Filed: January 2, 2018
    Publication date: August 16, 2018
    Inventors: David Warren Corman, Robert McMorrow, Andrew Street, Vipul Jain, Kristian Madsen, Robert Ian Gresham, Jonathan Comeau, Gaurav Menon, Nitin Jain
  • Publication number: 20180062274
    Abstract: In certain exemplary embodiments, register banks are used to allow for fast beam switching (FBS) in a phased array system. Specifically, each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be preprogrammed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Additionally or alternatively, active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
  • Patent number: 9876514
    Abstract: In some example implementations, there may be provided methods for beamforming calibration of active electronically steered arrays (AESA). In some implementations, one or more adders may generate a phase offset by adding phase calibration data from non-volatile memory and phase command data from static memory, and/or generate a gain offset by adding gain calibration data from the non-volatile memory and gain command data from the static memory. Further, a phase-shift circuit can modify, based on the phase offset, a phase of a first output signal, and an amplitude gain circuit can modify, based on the gain offset, an amplitude of the first output signal. In accordance with these implementations, the modified phase of the first output signal and the modified amplitude of the first output signal are provided to enable pre-calibration of the first output signal and/or a first antenna. Related systems, methods, and articles of manufacture are also described.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: January 23, 2018
    Assignee: ANOKIWAVE, INC.
    Inventors: David Warren Corman, Robert McMorrow, Andrew Street, Vipul Jain, Kristian Madsen, Robert Ian Gresham, Jonathan Comeau, Gaurav Menon, Nitin Jain
  • Patent number: 8559905
    Abstract: Systems, devices and methods are disclosed for suppressing the 2LO frequency spur, output from a mixer. In various exemplary embodiments, a DC bias circuit is electrically connected to provide DC bias to one or more non-linear elements of the mixer. The biasing voltage is used to cause the current-voltage characteristics and/or junction capacitances between non-linear elements to be more symmetric and/or to suppress 2LO leakage currents that form 2LO frequency spurs at the output of the mixer. The non-linear elements may comprise one of: BJT's, diodes, and FET's. The mixer may be one of: a subharmonic mixer; a fundamental resistive mixer; a fundamental subharmonic transconductance mixer; and a fundamental transconductance mixer comprising an anti-parallel diode pair. The system may further be configured to automatically determine an appropriate DC bias voltage level that will improve one of the LO-IF isolation and the LO-RF isolation.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: October 15, 2013
    Assignee: ViaSat, Inc.
    Inventors: Kenneth V. Buer, Gaurav Menon, Ramanamurthy V. Darapu, Dean Muellenberg
  • Patent number: 8436450
    Abstract: In wireless communication devices, internally matching impedance in millimeter wave packaging enables better signal retention at high frequencies in the range of 15 GHz and above. Through the use of differential wire bond signal transmission, the inherent inductance of a millimeter wave package can be matched by the capacitance of the package wire bonds if the capacitance is tailored. The capacitance can be tailored by calculating a suitable distance between wire bonds and tuning the dielectric constant of the over-mold material. A differential set of wire bonds act like a differential transmission line whose characteristic impedance can be tuned by configuring the dielectric constant of the over-mold of the millimeter wave package.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: May 7, 2013
    Assignee: ViaSat, Inc.
    Inventor: Gaurav Menon
  • Patent number: 8289083
    Abstract: A circuit topology in accordance with a system, method and device for an active power splitter with an input and at least two outputs which allows the use of negative feedback and thus improving stability and linearity without substantially increasing the noise figure of the system is provided.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: October 16, 2012
    Assignee: ViaSat, Inc.
    Inventors: Gaurav Menon, Nitin Jain, David W. Corman
  • Patent number: 8260342
    Abstract: Two or more transceiver units can interact with each other via millimeter wave radio frequency signals. One of the transceiver units can detect time-varying signals having specific waveforms in order to initiate an action such as establishment of a communication link, powering a piece of equipment and the like. The time-varying signal can be generated by a user moving one of the transceiver units and/or by passing an non-transmissive obstruction in between the transceiver units. Related apparatus, systems, and methods are also disclosed.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: September 4, 2012
    Assignee: Anokiwave, Inc.
    Inventors: Nitin Jain, Fnu Rajanish, Gaurav Menon
  • Patent number: 8179333
    Abstract: A compact millimeter-wave transmitter and receiver make use of interconnections within a chip-containing package for providing an integrated antenna. Due to shorter wavelength of millimeter-waves, these interconnections can be used as antennas for radiation of electromagnetic waves. A dielectric cover or lens is provided within the package to increase the antenna's directivity and to provide a mechanical shield for the chip.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: May 15, 2012
    Assignee: Anokiwave, Inc.
    Inventors: Fnu Rajanish, Nitin Jain, Gaurav Menon, Angelos Alexanian
  • Publication number: 20110165844
    Abstract: Two or more transceiver units can interact with each other via millimeter wave radio frequency signals. One of the transceiver units can detect time-varying signals having specific waveforms in order to initiate an action such as establishment of a communication link, powering a piece of equipment and the like. The time-varying signal can be generated by a user moving one of the transceiver units and/or by passing an non-transmissive obstruction in between the transceiver units. Related apparatus, systems, and methods are also disclosed.
    Type: Application
    Filed: January 6, 2010
    Publication date: July 7, 2011
    Inventors: Nitin Jain, FNU Rajanish, Gaurav Menon
  • Patent number: 7915935
    Abstract: A low-cost and power-efficient communication system using digital frequency centering techniques suitable for millimeter-wave wide-bandwidth bands with mostly digital components. Significant circuitry in the frequency source can be switched-off, thus conserving power. With the use of non-coherent detection, power consumption can be further reduced as higher phase noise and lower frequency accuracy can be tolerated. In the first embodiment frequency centering is achieved with a multiple-state system which compares a frequency dependent unique state to a programmed or hardwired desired state. In an alternative embodiment this multiple-state system is implemented by means of a microcontroller through either software or hardware.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: March 29, 2011
    Assignee: Anokiwave, Inc.
    Inventors: Gaurav Menon, Nitin Jain, Fnu Rajanish
  • Publication number: 20100283700
    Abstract: A compact millimeter-wave transmitter and receiver make use of interconnections within a chip-containing package for providing an integrated antenna. Due to shorter wavelength of millimeter-waves, these interconnections can be used as antennas for radiation of electromagnetic waves. A dielectric cover or lens is provided within the package to increase the antenna's directivity and to provide a mechanical shield for the chip.
    Type: Application
    Filed: May 8, 2009
    Publication date: November 11, 2010
    Applicant: Anokiwave, Inc.
    Inventors: Fnu Rajanish, Nitin Jain, Gaurav Menon, Angelos Alexanian
  • Publication number: 20100259312
    Abstract: A circuit topology in accordance with a system, method and device for an active power splitter with an input and at least two outputs which allows the use of negative feedback and thus improving stability and linearity without substantially increasing the noise figure of the system is provided.
    Type: Application
    Filed: April 13, 2010
    Publication date: October 14, 2010
    Applicant: VIASAT, INC.
    Inventors: Gaurav Menon, Nitin Jain, David W. Corman
  • Publication number: 20090195325
    Abstract: In wireless communication devices, internally matching impedance in millimeter wave packaging enables better signal retention at high frequencies in the range of 15 GHz and above. Through the use of differential wire bond signal transmission, the inherent inductance of a millimeter wave package can be matched by the capacitance of the package wire bonds if the capacitance is tailored. The capacitance can be tailored by calculating a suitable distance between wire bonds and tuning the dielectric constant of the over-mold material. A differential set of wire bonds act like a differential transmission line whose characteristic impedance can be tuned by configuring the dielectric constant of the over-mold of the millimeter wave package.
    Type: Application
    Filed: February 1, 2008
    Publication date: August 6, 2009
    Applicant: VIASAT, INC.
    Inventor: Gaurav Menon
  • Publication number: 20090149150
    Abstract: Systems, devices and methods are disclosed for suppressing the 2LO frequency spur, output from a mixer. In various exemplary embodiments, a DC bias circuit is electrically connected to provide DC bias to one or more non-linear elements of the mixer. The biasing voltage is used to cause the current-voltage characteristics and/or junction capacitances between non-linear elements to be more symmetric and/or to suppress 2LO leakage currents that form 2LO frequency spurs at the output of the mixer. The non-linear elements may comprise one of: BJT's, diodes, and FET's. The mixer may be one of: a subharmonic mixer; a fundamental resistive mixer; a fundamental subharmonic transconductance mixer; and a fundamental transconductance mixer comprising an anti-parallel diode pair. The system may further be configured to automatically determine an appropriate DC bias voltage level that will improve one of the LO-IF isolation and the LO-RF isolation.
    Type: Application
    Filed: December 5, 2007
    Publication date: June 11, 2009
    Applicant: VIASAT, INC.
    Inventors: Kenneth V. Buer, Gaurav Menon, Ramanamurthy V. Darapu, Dean Muellenberg
  • Publication number: 20060152280
    Abstract: Systems, devices, and methods are provided for actively biasing a multi-stage amplifier. A method for differentially actively biasing a multi-stage amplifier comprises the steps of: actively biasing, with a single active bias circuit, an amplifier comprising a plurality of amplification stages; and differentially applying the bias provided by the single active bias circuit by biasing at least one amplification stage at a different bias level than another of the plurality of amplification stages. An active bias circuit for a multi-stage amplifier comprises: a single active bias circuit that is configured to actively bias a plurality of amplification stages via at least two gates; and a differential device configured to cause the active biasing provided to one gate to be different from the bias provided to another gate.
    Type: Application
    Filed: January 7, 2005
    Publication date: July 13, 2006
    Applicant: U.S. MONOLITHICS, L.L.C.
    Inventors: Charles Woods, Gaurav Menon
  • Patent number: 6867651
    Abstract: A MMIC (microwave monolithic integrated circuit) driver amplifier having a zig-zag RF signal flow and method for the same is provided. A smaller die size and higher output gain are realized with the improved amplification stage geometry provided herein. In particular, the stages are configured in a “stacked” topology permitting a zig-zag RF signal flow through the stages. Additionally, the DC bias circuitry may be centralized and adjacent stages may share vias. In particular, transistors, such as FETs (field effect transistors) are displaced from a conventional FET geometry with alternating FETs being rotated in opposite directions. The inputs (gate pads) and outputs (drain pads) of two adjacent FETs may be “shared.” In a shared input configuration, a compensation network may be coupled to the input. The improved amplifier configuration provides a multi-sectional configuration wherein one section may be the mirrored image of another. In a two section amplifier, the amplifier appears to be “folded.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: March 15, 2005
    Assignee: U.S. Monolithics, LLC
    Inventors: Kenneth V. Buer, Deborah S. Dendy, Gaurav Menon