Patents by Inventor Gayle W. Miller

Gayle W. Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8378414
    Abstract: By aligning the primary flat of a wafer with a (100) plane rather than a (110) plane, devices can be formed with primary currents flowing along the (100) plane. In this case, the device will intersect the (111) plane at approximately 54.7 degrees. This intersect angle significantly reduces stress propagation/relief along the (111) direction and consequently reduces defects as well as leakage and parasitic currents. The leakage current reduction is a direct consequence of the change in the dislocation length required to short the source-drain junction. By using this technique the leakage current is reduced by up to two orders of magnitude for an N-channel CMOS device.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 19, 2013
    Assignee: Atmel Corporation
    Inventors: Gayle W. Miller, Volker Dudek, Michael Graf
  • Patent number: 8138578
    Abstract: A method and system for providing a twin well in a semiconductor device is described. The method and system include providing at least one interference layer and providing a first mask that covers a first portion of the semiconductor device and uncovers a second portion of the semiconductor device. The first and second portions of the semiconductor device are adjacent. The method and system also include implanting a first well in the second portion of the semiconductor device after the first mask is provided. The method and system also include providing a second mask. The interference layer(s) are configured such that energy during a blanket exposure develops the second mask that uncovers the first portion and covers the second portion of the semiconductor device. The method and system also include implanting a second well in the first portion of the semiconductor device after the second mask is provided.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: March 20, 2012
    Assignee: Atmel Corporation
    Inventors: Gayle W. Miller, Jr., Bryan D. Sendelweck
  • Publication number: 20110260250
    Abstract: By aligning the primary flat of a wafer with a (100) plane rather than a (110) plane, devices can be formed with primary currents flowing along the (100) plane. In this case, the device will intersect the (111) plane at approximately 54.7 degrees. This intersect angle significantly reduces stress propagation/relief along the (111) direction and consequently reduces defects as well as leakage and parasitic currents. The leakage current reduction is a direct consequence of the change in the dislocation length required to short the source-drain junction. By using this technique the leakage current is reduced by up to two orders of magnitude for an N-channel CMOS device.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 27, 2011
    Applicant: ATMEL CORPORATION
    Inventors: Gayle W. Miller, Volker Dudek, Michael Graf
  • Patent number: 7848070
    Abstract: An electrostatic discharge (ESD) protection structure is disclosed. The ESD protection structure includes an active device. The active device includes a plurality of drains. Each of the drains has a contact row and at least one body contact row. The at least one body contact row is located on the active device in a manner to reduce the amount of voltage required for triggering the ESD protection structure.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: December 7, 2010
    Assignee: Atmel Corporation
    Inventors: Stefan Schwantes, Michael Graf, Volker Dudek, Gayle W. Miller, Jr., Irwin Rathbun, Peter Grombach, Manfred Klaussner
  • Patent number: 7642181
    Abstract: A method and system for providing a twin well in a semiconductor device is described. The method and system include masking a first portion of the device such that a second portion of the device is exposed. A sacrificial layer has a first portion on the first portion of the device and a second portion on the second portion of the device. In one aspect, an oxidation stop layer may be below the sacrificial layer. The method and system include implanting a first well in the second portion of the device, exposing the first portion of the device after the first well is implanted, and oxidizing the second portion of sacrificial layer after the exposing. The method and system further include implanting the second well in the first portion of the device after the oxidizing and planarizing the device after the second well is implanted.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: January 5, 2010
    Assignee: Atmel Corporation
    Inventors: Gayle W. Miller, Jr., Irwin D. Rathbun, Bryan D. Sendelweck, Thomas S. Moss, III
  • Patent number: 7629649
    Abstract: Methods and materials for silicon on insulator wafer production in which the doping concentration in a handle wafer is sufficiently high to inhibit dopant from diffusing from the bond wafer during or after bonding to the handle wafer.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: December 8, 2009
    Assignee: Atmel Corporation
    Inventors: Gayle W. Miller, Thomas S. Moss, Mark A. Good
  • Publication number: 20090206452
    Abstract: A method and system for providing a twin well in a semiconductor device is described. The method and system include providing at least one interference layer and providing a first mask that covers a first portion of the semiconductor device and uncovers a second portion of the semiconductor device. The first and second portions of the semiconductor device are adjacent. The method and system also include implanting a first well in the second portion of the semiconductor device after the first mask is provided. The method and system also include providing a second mask. The interference layer(s) are configured such that energy during a blanket exposure develops the second mask that uncovers the first portion and covers the second portion of the semiconductor device. The method and system also include implanting a second well in the first portion of the semiconductor device after the second mask is provided.
    Type: Application
    Filed: April 20, 2009
    Publication date: August 20, 2009
    Applicant: Atmel Corporation
    Inventors: Gayle W. Miller, JR., Bryan D. Sendelweck
  • Patent number: 7541250
    Abstract: A method for forming a self-aligned twin well region is provided. The method includes implanting a first well type doping species into the DHL such that its distribution remains stopped in the DHL above the silicon substrate, etching away a portion of the DHL using a photoresist mask, implanting a second well type doping species into the portions of the silicon substrate exposed by the etching, and moving a portion of the first well type doping species into the silicon substrate.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: June 2, 2009
    Assignee: Atmel Corporation
    Inventors: Gayle W. Miller, Jr., Bryan D. Sendelweck
  • Patent number: 7521312
    Abstract: A method and system for providing a twin well in a semiconductor device is described. The method and system include providing at least one interference layer and providing a first mask that covers a first portion of the semiconductor device and uncovers a second portion of the semiconductor device. The first and second portions of the semiconductor device are adjacent. The method and system also include implanting a first well in the second portion of the semiconductor device after the first mask is provided. The method and system also include providing a second mask. The interference layer(s) are configured such that energy during a blanket exposure develops the second mask that uncovers the first portion and covers the second portion of the semiconductor device. The method and system also include implanting a second well in the first portion of the semiconductor device after the second mask is provided.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: April 21, 2009
    Assignee: Atmel Corporation
    Inventors: Gayle W. Miller, Jr., Bryan D. Sendelweck
  • Publication number: 20080290426
    Abstract: A method of fabricating an electronic device and a resulting electronic device. The method includes forming a pad oxide layer on a substrate, forming a silicon nitride layer over the pad oxide layer, and forming a top oxide layer over the silicon nitride layer. A first dopant region is then formed in a first portion of the substrate. A first portion of the top oxide layer is removed; a remaining portion of the top oxide layer is used to align a second dopant mask and a second dopant region is formed. An annealing step drives-in the dopants but oxygen diffusion to the substrate is limited by the silicon nitride layer; the silicon nitride layer thereby assures that the uppermost surface of the silicon is substantially planar in an area proximate to the dopant regions after the annealing step.
    Type: Application
    Filed: August 4, 2008
    Publication date: November 27, 2008
    Applicant: Atmel Corporation
    Inventors: Gayle W. Miller, Irwin D. Rathbun, Stefan Schwantes, Michael Graf, Volker Dudek
  • Publication number: 20080278874
    Abstract: An electrostatic discharge (ESD) protection structure is disclosed. The ESD protection structure includes an active device. The active device includes a plurality of drains. Each of the drains has a contact row and at least one body contact row. The at least one body contact row is located on the active device in a manner to reduce the amount of voltage required for triggering the ESD protection structure.
    Type: Application
    Filed: July 21, 2008
    Publication date: November 13, 2008
    Inventors: Stefan Schwantes, Michael Graf, Volker Dudek, Gayle W. Miller, JR., Irwin Rathbun, Peter Grombach, Manfred Klaussner
  • Publication number: 20080201088
    Abstract: A system and method for monitoring a process. The system includes a processing chamber for receiving a workpiece, a processor coupled to the processing chamber, and at least one surface acoustic wave (SAW) device coupled to the workpiece, and wherein the processor utilizes the at least one SAW device to determine the conditions of the workpiece during processing. According to the method and system disclosed herein, the present invention provides inexpensive, accurate, and abundant information to control a process.
    Type: Application
    Filed: February 20, 2007
    Publication date: August 21, 2008
    Applicant: Atmel Corporation
    Inventor: Gayle W. Miller
  • Patent number: 7407851
    Abstract: A method of fabricating an electronic device and a resulting electronic device. The method includes forming a pad oxide layer on a substrate, forming a silicon nitride layer over the pad oxide layer, and forming a top oxide layer over the silicon nitride layer. A first dopant region is then formed in a first portion of the substrate. A first portion of the top oxide layer is removed; a remaining portion of the top oxide layer is used to align a second dopant mask and a second dopant region is formed. An annealing step drives-in the dopants but oxygen diffusion to the substrate is limited by the silicon nitride layer; the silicon nitride layer thereby assures that the uppermost surface of the silicon is substantially planar in an area proximate to the dopant regions after the annealing step.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: August 5, 2008
    Inventors: Gayle W. Miller, Irwin D. Rathbun, Stefan Schwantes, Michael Graf, Volker Dudek
  • Publication number: 20080173940
    Abstract: A method of fabricating an electronic device and the resulting electronic device. The method includes forming a gate oxide on an uppermost side of a silicon-on-insulator substrate; forming a first polysilicon layer over the gate oxide; and forming a first silicon dioxide layer over the first polysilicon layer. A first silicon nitride layer is then formed over the first silicon dioxide layer followed by a second silicon dioxide layer. Shallow trenches are etched through all preceding dielectric layers and into the SOI substrate. The etched trenches are filled with another dielectric layer (e.g., silicon dioxide) and planarized. Each of the preceding dielectric layers are removed, leaving an uppermost sidewall area of the dielectric layer exposed for contact with a later-applied polysilicon gate area. Formation of the sidewall area assures a full-field oxide thickness thereby producing a device with a reduced-electric field and a reduced capacitance between gate and drift regions.
    Type: Application
    Filed: January 23, 2008
    Publication date: July 24, 2008
    Applicant: Atmel Corporation
    Inventors: Gayle W. Miller, Volker Dudek, Michael Graf
  • Patent number: 7402846
    Abstract: An electrostatic discharge (ESD) protection structure is disclosed. The ESD protection structure includes an active device. The active device includes a plurality of drains. Each of the drains has a contact row and at least one body contact row. The at least one body contact row is located on the active device in a manner to reduce the amount of voltage required for triggering the ESD protection structure.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: July 22, 2008
    Assignee: Atmel Corporation
    Inventors: Stefan Schwantes, Michael Graf, Volker Dudek, Gayle W. Miller, Jr., Irwin Rathbun, Peter Grombach, Manfred Klaussner
  • Publication number: 20080166862
    Abstract: A method and system for providing a twin well in a semiconductor device is described. The method and system include providing at least one interference layer and providing a first mask that covers a first portion of the semiconductor device and uncovers a second portion of the semiconductor device. The first and second portions of the semiconductor device are adjacent. The method and system also include implanting a first well in the second portion of the semiconductor device after the first mask is provided. The method and system also include providing a second mask. The interference layer(s) are configured such that energy during a blanket exposure develops the second mask that uncovers the first portion and covers the second portion of the semiconductor device. The method and system also include implanting a second well in the first portion of the semiconductor device after the second mask is provided.
    Type: Application
    Filed: January 5, 2007
    Publication date: July 10, 2008
    Inventors: Gayle W. Miller, Bryan D. Sendelweck
  • Publication number: 20080135933
    Abstract: A method of fabricating an electronic device and the resulting electronic device. The method includes forming a gate oxide on an uppermost side of a silicon-on-insulator substrate; forming a first polysilicon layer over the gate oxide; and forming a first silicon dioxide layer over the first polysilicon layer. A first silicon nitride layer is then formed over the first silicon dioxide layer followed by a second silicon dioxide layer. Shallow trenches are etched through all preceding dielectric layers and into the SOI substrate. The etched trenches are filled with another dielectric layer (e.g., silicon dioxide) and planarized. Each of the preceding dielectric layers are removed, leaving an uppermost sidewall area of the dielectric layer exposed for contact with a later-applied polysilicon gate area. Formation of the sidewall area assures a full-field oxide thickness thereby producing a device with a reduced-electric field and a reduced capacitance between gate and drift regions.
    Type: Application
    Filed: January 23, 2008
    Publication date: June 12, 2008
    Applicant: Atmel Corporation
    Inventors: Gayle W. Miller, Volker Dudek, Michael Graf
  • Publication number: 20080108212
    Abstract: Apparatus and a method for adding non-volatile memory cells with trench-filled vertical gates to conventional MOSFET surface devices that have their drain and source regions horizontally positioned near the top surface of a substrate. A surface MOSFET device is used as a structural platform to which is added a vertical trench-filled polysilicon gate and a word line region using a small number of additional mask layers and fabrication process modifications. A vertical trench filled polysilicon gate is formed in a deep trench in a lower region of the substrate and adjacent to a MOSFET body portion of the substrate. The vertical trench-filled polysilicon gate in the deep trench is isolated by dielectric material from the body portion of the MOSFET and from a word line region that is formed in the lower region of the substrate.
    Type: Application
    Filed: October 19, 2006
    Publication date: May 8, 2008
    Applicant: ATMEL CORPORATION
    Inventors: Thomas S. Moss, Lee A. Bowman, Gayle W. Miller, Stefan Schwantes
  • Patent number: 7348256
    Abstract: A method of fabricating an electronic device and the resulting electronic device. The method includes forming a gate oxide on an uppermost side of a silicon-on-insulator substrate; forming a first polysilicon layer over the gate oxide; and forming a first silicon dioxide layer over the first polysilicon layer. A first silicon nitride layer is then formed over the first silicon dioxide layer followed by a second silicon dioxide layer. Shallow trenches are etched through all preceding dielectric layers and into the SOI substrate. The etched trenches are filled with another dielectric layer (e.g., silicon dioxide) and planarized. Each of the preceding dielectric layers are removed, leaving an uppermost sidewall area of the dielectric layer exposed for contact with a later-applied polysilicon gate area. Formation of the sidewall area assures a full-field oxide thickness thereby producing a device with a reduced-electric field and a reduced capacitance between gate and drift regions.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: March 25, 2008
    Assignee: Atmel Corporation
    Inventors: Gayle W. Miller, Jr., Volker Dudek, Michael Graf
  • Patent number: 7230342
    Abstract: A first mark, in a double-well integrated circuit technology, is formed by a first etching of a first mask layer on top of an ONO stack. After a first well is doped, a second etching occurs at the first etching sites in the uppermost layer of oxide of the ONO stack forming a first alignment artifact. A second mask layer is applied after removing the first mask layer. A second well doping occurs at second mask layer etching sites to maintain clearance between the two wells within active areas and provide an overlap of the two wells in a frame area. At the first alignment artifact in the overlap of the two wells, further etchings remove remaining layers of the ONO stack and remove silicon from the upper most layer of the semiconductor forming a second registration mark, which may be covered by a protective layer.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: June 12, 2007
    Assignee: Atmel Corporation
    Inventors: Franz Dietz, Volker Dudek, Michael Graf, Stefan Schwantes, Gayle W. Miller, Jr.