Patents by Inventor Genta Mizuno

Genta Mizuno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9666594
    Abstract: A memory cell can be formed with a pair of charge storage regions. The pair of charge storage regions can be two portions of a charge storage region that are located at the same level and are positioned adjacent to two different control gate electrodes. Alternately, the pair of charge storage regions can be two disjoined structures located on opposite sides of a portion of a semiconductor channel. Yet alternately, the pair of charge storage regions can be two disjoined structures located at the same level, and on two laterally split semiconductor channel. The memory cell can be employed to store two bits of information within the pair of charge storage regions located at the same level within a vertical memory string that employs a single memory opening.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: May 30, 2017
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Genta Mizuno, Masanori Tsutsumi, Jayavel Pachamuthu
  • Patent number: 9401309
    Abstract: Contact openings extending to sacrificial layers located at different depths can be formed by sequentially exposing a greater number of openings in a mask layer by iterative alternation of trimming of a slimming layer over the mask layer and an anisotropic etch that recesses pre-existing contact openings by one level. In one embodiment, pairs of an electrically conductive via contact and electrically conductive electrodes can be simultaneously formed as integrated line and via structures. In another embodiment, encapsulated unfilled cavities can be formed in the contact openings by non-conformal deposition of a material layer, electrically conductive electrodes can be formed by replacement of portions of the sacrificial layers, and the electrically conductive via contacts can be subsequently formed on the electrically conductive electrodes. Electrically conductive via contacts extending to electrically conductive electrodes located at different level can be provided with self-aligned insulating liner.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: July 26, 2016
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Keisuke Izumi, Naohito Yanagida, Michiaki Sano, Takehiro Yamazaki, Hiroaki Iuchi, Akio Yanai, Genta Mizuno, Minoru Yamaguchi
  • Publication number: 20160071876
    Abstract: A memory cell can be formed with a pair of charge storage regions. The pair of charge storage regions can be two portions of a charge storage region that are located at the same level and are positioned adjacent to two different control gate electrodes. Alternately, the pair of charge storage regions can be two disjoined structures located on opposite sides of a portion of a semiconductor channel. Yet alternately, the pair of charge storage regions can be two disjoined structures located at the same level, and on two laterally split semiconductor channel. The memory cell can be employed to store two bits of information within the pair of charge storage regions located at the same level within a vertical memory string that employs a single memory opening.
    Type: Application
    Filed: May 26, 2015
    Publication date: March 10, 2016
    Inventors: Genta MIZUNO, Masanori TSUTSUMI, Jayavel PACHAMUTHU
  • Publication number: 20160064281
    Abstract: Contact openings extending to sacrificial layers located at different depths can be formed by sequentially exposing a greater number of openings in a mask layer by iterative alternation of trimming of a slimming layer over the mask layer and an anisotropic etch that recesses pre-existing contact openings by one level. In one embodiment, pairs of an electrically conductive via contact and electrically conductive electrodes can be simultaneously formed as integrated line and via structures. In another embodiment, encapsulated unfilled cavities can be formed in the contact openings by non-conformal deposition of a material layer, electrically conductive electrodes can be formed by replacement of portions of the sacrificial layers, and the electrically conductive via contacts can be subsequently formed on the electrically conductive electrodes. Electrically conductive via contacts extending to electrically conductive electrodes located at different level can be provided with self-aligned insulating liner.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 3, 2016
    Inventors: Keisuke Izumi, Naohito Yanagida, Michiaki Sano, Takehiro Yamazaki, Hiroaki Iuchi, Akio Yanai, Genta Mizuno, Minoru Yamaguchi
  • Patent number: 9159739
    Abstract: A monolithic three dimensional NAND string includes a semiconductor channel, with at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, and a plurality of copper containing control gate electrodes extending substantially parallel to the major surface of the substrate. The plurality of control gate electrodes include at least a first control gate electrode located in a first device level and a second control gate electrode located in a second device level located over the major surface of the substrate and below the first device level. The NAND string also includes a blocking dielectric located over the plurality of control gates, a tunnel dielectric in contact with the semiconductor channel, and at least one charge storage region located between the blocking dielectric and the tunnel dielectric.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: October 13, 2015
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Raghuveer S. Makala, Yanli Zhang, Yao-Sheng Lee, Senaka Krishna Kanakamedala, Rahul Sharangpani, George Matamis, Johann Alsmeier, Seiji Shimabukuro, Genta Mizuno, Naoki Takeguchi
  • Publication number: 20150179662
    Abstract: A memory film and a semiconductor channel can be formed within each memory opening that extends through a stack including an alternating plurality of insulator layers and sacrificial material layers. After formation of backside recesses through removal of the sacrificial material layers selective to the insulator layers, a metallic barrier material portion can be formed in each backside recess. A cobalt portion can be formed in each backside recess. Each backside recess can be filled with a cobalt portion alone, or can be filled with a combination of a cobalt portion and a metallic material portion including a material other than cobalt.
    Type: Application
    Filed: February 4, 2015
    Publication date: June 25, 2015
    Inventors: Raghuveer S. MAKALA, Rahul SHARANGPANI, Sateesh KOKA, Genta MIZUNO, Naoki TAKEGUCHI, Senaka Krishna KANAKAMEDALA, George MATAMIS, Yao-Sheng LEE, Johann ALSMEIER
  • Publication number: 20140353738
    Abstract: A method of making a monolithic three dimensional NAND string including providing a stack of alternating first material layers and second material layers over a substrate. The first material layers comprise an insulating material and the second material layers comprise sacrificial layers. The method also includes forming a back side opening in the stack, selectively removing the second material layers through the back side opening to form back side recesses between adjacent first material layers and forming a blocking dielectric inside the back side recesses and the back side opening. The blocking dielectric has a clam shaped regions inside the back side recesses. The method also includes forming a plurality of copper control gate electrodes in the respective clam shell shaped regions of the blocking dielectric in the back side recesses.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 4, 2014
    Inventors: Raghuveer S. Makala, Yanli Zhang, Yao-Sheng Lee, Senaka Krishna Kanakamedala, Rahul Sharangpani, George Matamis, Johann Alsmeier, Seiji Shimabukuro, Genta Mizuno, Naoki Takeguchi