Patents by Inventor Geoff Sean Lyon

Geoff Sean Lyon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12101906
    Abstract: A fluid heat exchanger for cooling an electronic device can have a plurality of walls. The walls can define a corresponding plurality of microchannels. Each microchannel can extend from a first end to a second end. The plurality of microchannels can define at least two opposed outer microchannels and a centrally located microchannel positioned between the opposed outer microchannels. A fluid inlet passage can be configured to deliver a heat-exchange fluid to each microchannel between the corresponding first end and the corresponding second end of the respective microchannel. A fluid outlet passage can have an enlarged outlet region from the centrally located microchannel compared to a corresponding outlet region from one or both of the opposed outer microchannels. Related methods are disclosed.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: September 24, 2024
    Assignee: CoolIT Systems, Inc.
    Inventor: Geoff Sean Lyon
  • Publication number: 20240175646
    Abstract: A fluid heat exchanger includes: a heat spreader plate including an intended heat generating component contact region; a plurality of microchannels for directing heat transfer fluid over the heat spreader plate, the plurality of microchannels each having a first end and an opposite end and each of the plurality of microchannels extending substantially parallel with each other microchannel and each of the plurality of microchannels having a continuous channel flow path between their first end and their opposite end; a fluid inlet opening for the plurality of microchannels and positioned between the microchannel first and opposite ends, a first fluid outlet opening from the plurality of microchannels at each of the microchannel first ends; and an opposite fluid outlet opening from the plurality of microchannels at each of the microchannel opposite ends, the fluid inlet opening and the first and opposite fluid outlet openings providing that any flow of heat transfer fluid that passes into the plurality of microc
    Type: Application
    Filed: January 29, 2024
    Publication date: May 30, 2024
    Inventor: Geoff Sean Lyon
  • Patent number: 11994350
    Abstract: A fluid heat exchanger includes: a heat spreader plate including an intended heat generating component contact region; a plurality of microchannels for directing heat transfer fluid over the heat spreader plate, the plurality of microchannels each having a first end and an opposite end and each of the plurality of microchannels extending substantially parallel with each other microchannel and each of the plurality of microchannels having a continuous channel flow path between their first end and their opposite end; a fluid inlet opening for the plurality of microchannels and positioned between the microchannel first and opposite ends, a first fluid outlet opening from the plurality of microchannels at each of the microchannel first ends; and an opposite fluid outlet opening from the plurality of microchannels at each of the microchannel opposite ends, the fluid inlet opening and the first and opposite fluid outlet openings providing that any flow of heat transfer fluid that passes into the plurality of microc
    Type: Grant
    Filed: February 7, 2021
    Date of Patent: May 28, 2024
    Assignee: CoolIT Systems, Inc.
    Inventor: Geoff Sean Lyon
  • Publication number: 20230350436
    Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. An electro-mechanical actuator can be selectively activatable responsive to the command.
    Type: Application
    Filed: July 3, 2023
    Publication date: November 2, 2023
    Inventors: Geoff Sean Lyon, Mike Holden
  • Publication number: 20230323872
    Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. For example, a leak detector can emit in response to a detected leak, or a flow-rate sensor can emit in response to a detected flow-rate of a liquid, a simulated fan-speed tachometer signal representative of a selected fan speed. At least partially in response to observing a simulated tachometer signal, a controller can issue a system command corresponding to an underlying system condition for which the simulated tachometer signal is a proxy.
    Type: Application
    Filed: May 29, 2023
    Publication date: October 12, 2023
    Inventors: Geoff Sean Lyon, Mike Holden
  • Publication number: 20230296186
    Abstract: A fluid flow control valve includes a valve body having a bore configured to convey fluid from an inlet port to an outlet port. The inlet and outlet ports, and the bore therebetween, define a fluid flow path through the valve body. A gate element is disposed in the bore. The gate element is positionable in the bore from a first position, which allows fluid flow through the bore, to a second position which restricts fluid flow through the bore. An actuator is coupled to the gate element and is configured to urge the gate element from the first position toward the second position. A fuse consisting of a transformable retainer is configured to retain the gate element in the first position, while the retainer is in a first condition, and to allow the gate element to move toward the second position when the retainer transforms to a second condition. The transformable retainer may be configured to transform from the first condition to the second condition responsive to a signal, e.g.
    Type: Application
    Filed: May 29, 2023
    Publication date: September 21, 2023
    Inventor: Geoff Sean Lyon
  • Patent number: 11714432
    Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. An electro-mechanical actuator can be selectively activatable responsive to the command.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: August 1, 2023
    Assignee: CoolIT Systems, Inc.
    Inventors: Geoff Sean Lyon, Mike Holden
  • Patent number: 11662037
    Abstract: A fluid flow control valve includes a valve body having a bore configured to convey fluid from an inlet port to an outlet port. The inlet and outlet ports, and the bore therebetween, define a fluid flow path through the valve body. A gate element is disposed in the bore. The gate element is positionable in the bore from a first position, which allows fluid flow through the bore, to a second position which restricts fluid flow through the bore. An actuator is coupled to the gate element and is configured to urge the gate element from the first position toward the second position. A fuse consisting of a transformable retainer is configured to retain the gate element in the first position, while the retainer is in a first condition, and to allow the gate element to move toward the second position when the retainer transforms to a second condition. The transformable retainer may be configured to transform from the first condition to the second condition responsive to a signal, e.g.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: May 30, 2023
    Assignee: CoolIT Systems, Inc.
    Inventor: Geoff Sean Lyon
  • Patent number: 11661936
    Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. For example, a leak detector can emit in response to a detected leak, or a flow-rate sensor can emit in response to a detected flow-rate of a liquid, a simulated fan-speed tachometer signal representative of a selected fan speed. At least partially in response to observing a simulated tachometer signal, a controller can issue a system command corresponding to an underlying system condition for which the simulated tachometer signal is a proxy.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: May 30, 2023
    Assignee: CoolIT Systems, Inc.
    Inventors: Geoff Sean Lyon, Mike Holden
  • Publication number: 20220408615
    Abstract: Aspects of liquid operational systems are described. According to one aspect, a system to automatically fill a liquid operational component is described. According to another aspect, a self-diagnostic system is described. According to yet another aspect, a flow conditioning arrangement is described. A control system for a heat-transfer system includes a plurality of sensors. Each sensor is configured to observe an operational parameter indicative of a thermodynamic quantity and to emit a signal containing information corresponding to the observed operational parameter.
    Type: Application
    Filed: August 24, 2022
    Publication date: December 22, 2022
    Inventors: Geoff Sean Lyon, Pat McGinn, Mike Holden, Brydon Gierl
  • Patent number: 11452243
    Abstract: Aspects of liquid operational systems are described. According to one aspect, a system to automatically fill a liquid operational component is described. According to another aspect, a self-diagnostic system is described. According to yet another aspect, a flow conditioning arrangement is described. A control system for a heat-transfer system includes a plurality of sensors. Each sensor is configured to observe an operational parameter indicative of a thermodynamic quantity and to emit a signal containing information corresponding to the observed operational parameter.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: September 20, 2022
    Assignee: CoolIT Systems, Inc.
    Inventors: Geoff Sean Lyon, Pat McGinn, Mike Holden, Brydon Gierl
  • Publication number: 20210164736
    Abstract: A fluid heat exchanger includes: a heat spreader plate including an intended heat generating component contact region; a plurality of microchannels for directing heat transfer fluid over the heat spreader plate, the plurality of microchannels each having a first end and an opposite end and each of the plurality of microchannels extending substantially parallel with each other microchannel and each of the plurality of microchannels having a continuous channel flow path between their first end and their opposite end; a fluid inlet opening for the plurality of microchannels and positioned between the microchannel first and opposite ends, a first fluid outlet opening from the plurality of microchannels at each of the microchannel first ends; and an opposite fluid outlet opening from the plurality of microchannels at each of the microchannel opposite ends, the fluid inlet opening and the first and opposite fluid outlet openings providing that any flow of heat transfer fluid that passes into the plurality of microc
    Type: Application
    Filed: February 7, 2021
    Publication date: June 3, 2021
    Inventor: Geoff Sean Lyon
  • Publication number: 20210127528
    Abstract: Some modular heat-transfer systems can have an array of at least one heat-transfer element being configured to transfer heat to a working fluid from an operable element. A manifold module can have a distribution manifold and a collection manifold. A decoupleable inlet coupler can be configured to fluidicly couple the distribution manifold to a respective heat-transfer element. A decoupleable outlet coupler can be configured to fluidicly couple the respective heat-transfer element to the collection manifold. An environmental coupler can be configured to receive the working fluid from the collection manifold, to transfer heat to an environmental fluid from the working fluid or to transfer heat from an environmental fluid to the working fluid, and to discharge the working fluid to the distribution manifold.
    Type: Application
    Filed: October 19, 2020
    Publication date: April 29, 2021
    Inventors: Geoff Sean Lyon, Mike Holden, Brydon Gierl
  • Publication number: 20210045262
    Abstract: A fluid heat exchanger for cooling an electronic device can have a plurality of walls. The walls can define a corresponding plurality of microchannels. Each microchannel can extend from a first end to a second end. The plurality of microchannels can define at least two opposed outer microchannels and a centrally located microchannel positioned between the opposed outer microchannels. A fluid inlet passage can be configured to deliver a heat-exchange fluid to each microchannel between the corresponding first end and the corresponding second end of the respective microchannel. A fluid outlet passage can have an enlarged outlet region from the centrally located microchannel compared to a corresponding outlet region from one or both of the opposed outer microchannels. Related methods are disclosed.
    Type: Application
    Filed: October 23, 2020
    Publication date: February 11, 2021
    Inventor: Geoff Sean Lyon
  • Patent number: 10820450
    Abstract: Some modular heat-transfer systems can have an array of at least one heat-transfer element being configured to transfer heat to a working fluid from an operable element. A manifold module can have a distribution manifold and a collection manifold. A decoupleable inlet coupler can be configured to fluidicly couple the distribution manifold to a respective heat-transfer element. A decoupleable outlet coupler can be configured to fluidicly couple the respective heat-transfer element to the collection manifold. An environmental coupler can be configured to receive the working fluid from the collection manifold, to transfer heat to an environmental fluid from the working fluid or to transfer heat from an environmental fluid to the working fluid, and to discharge the working fluid to the distribution manifold.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: October 27, 2020
    Assignee: CoolIT Systems, Inc.
    Inventors: Geoff Sean Lyon, Mike Holden, Brydon Gierl
  • Publication number: 20200232572
    Abstract: A fluid flow control valve includes a valve body having a bore configured to convey fluid from an inlet port to an outlet port. The inlet and outlet ports, and the bore therebetween, define a fluid flow path through the valve body. A gate element is disposed in the bore. The gate element is positionable in the bore from a first position, which allows fluid flow through the bore, to a second position which restricts fluid flow through the bore. An actuator is coupled to the gate element and is configured to urge the gate element from the first position toward the second position. A fuse consisting of a transformable retainer is configured to retain the gate element in the first position, while the retainer is in a first condition, and to allow the gate element to move toward the second position when the retainer transforms to a second condition. The transformable retainer may be configured to transform from the first condition to the second condition responsive to a signal, e.g.
    Type: Application
    Filed: January 20, 2020
    Publication date: July 23, 2020
    Inventor: Geoff Sean Lyon
  • Publication number: 20190354121
    Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. An electro-mechanical actuator can be selectively activatable responsive to the command.
    Type: Application
    Filed: July 29, 2019
    Publication date: November 21, 2019
    Inventors: Geoff Sean Lyon, Mike Holden
  • Publication number: 20190345928
    Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. For example, a leak detector can emit in response to a detected leak, or a flow-rate sensor can emit in response to a detected flow-rate of a liquid, a simulated fan-speed tachometer signal representative of a selected fan speed. At least partially in response to observing a simulated tachometer signal, a controller can issue a system command corresponding to an underlying system condition for which the simulated tachometer signal is a proxy.
    Type: Application
    Filed: July 26, 2019
    Publication date: November 14, 2019
    Inventors: Geoff Sean Lyon, Mike Holden
  • Patent number: 10415597
    Abstract: An electric pump can have a stator with a stator core defining a plurality of poles, a coil of electrically conductive material extending around each respective one of the plurality of poles, and a stator-cooling chamber, as well as an impeller coupled to a rotor. A first region can be at least partially occupied by the impeller and fluidicly coupled with the stator-cooling chamber to convey a working fluid from the first region into the stator-cooling chamber. The stator-cooling chamber can be configured to facilitate heat transfer from the stator core and/or the coils to the working fluid in the stator-cooling chamber. Cooling systems can incorporate such a pump. Related methods also are disclosed.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: September 17, 2019
    Assignee: CoolIT Systems, Inc.
    Inventor: Geoff Sean Lyon
  • Patent number: 10364809
    Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. For example, a leak detector can emit in response to a detected leak, or a flow-rate sensor can emit in response to a detected flow-rate of a liquid, a simulated fan-speed tachometer signal representative of a selected fan speed. At least partially in response to observing a simulated tachometer signal, a controller can issue a system command corresponding to an underlying system condition for which the simulated tachometer signal is a proxy.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 30, 2019
    Assignee: CoolIT Systems, Inc.
    Inventors: Geoff Sean Lyon, Mike Holden