Patents by Inventor Geoff Sean Lyon

Geoff Sean Lyon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190116694
    Abstract: Aspects of liquid operational systems are described. According to one aspect, a system to automatically fill a liquid operational component is described. According to another aspect, a self-diagnostic system is described. According to yet another aspect, a flow conditioning arrangement is described. A control system for a heat-transfer system includes a plurality of sensors. Each sensor is configured to observe an operational parameter indicative of a thermodynamic quantity and to emit a signal containing information corresponding to the observed operational parameter.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 18, 2019
    Inventors: Geoff Sean Lyon, Pat McGinn, Mike Holden, Brydon Gierl
  • Publication number: 20180195810
    Abstract: A fluid heat exchanger includes: a heat spreader plate including an intended heat generating component contact region; a plurality of microchannels for directing heat transfer fluid over the heat spreader plate, the plurality of microchannels each having a first end and an opposite end and each of the plurality of microchannels extending substantially parallel with each other microchannel and each of the plurality of microchannels having a continuous channel flow path between their first end and their opposite end; a fluid inlet opening for the plurality of microchannels and positioned between the microchannel first and opposite ends, a first fluid outlet opening from the plurality of microchannels at each of the microchannel first ends; and an opposite fluid outlet opening from the plurality of microchannels at each of the microchannel opposite ends, the fluid inlet opening and the first and opposite fluid outlet openings providing that any flow of heat transfer fluid that passes into the plurality of microc
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Inventor: Geoff Sean Lyon
  • Patent number: 9943014
    Abstract: Some modular heat-transfer systems can have an array of at least one heat-transfer element being configured to transfer heat to a working fluid from a heat dissipator. A manifolded heat exchanger can be configured to receive heated working fluid from a plurality of heat-transfer elements and to reject heat to a working fluid of a second fluid circuit. In some embodiments, the heat exchanging manifold can split an incoming flow of working fluid from the second fluid circuit into two or more streams having different bulk flow directions. In some instances, heat exchanger portions of the heat exchanging manifold are configured to provide counter flow heat exchange between the working fluid of the first fluid circuit and the working fluid of the second fluid circuit.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: April 10, 2018
    Assignee: CoolIT Systems, Inc.
    Inventors: Geoff Sean Lyon, Mike Holden, Brydon Gierl
  • Patent number: 9909820
    Abstract: A fluid heat exchanger includes: a heat spreader plate including an intended heat generating component contact region; a plurality of microchannels for directing heat transfer fluid over the heat spreader plate, the plurality of microchannels each having a first end and an opposite end and each of the plurality of microchannels extending substantially parallel with each other microchannel and each of the plurality of microchannels having a continuous channel flow path between their first end and their opposite end; a fluid inlet opening for the plurality of microchannels and positioned between the microchannel first and opposite ends, a first fluid outlet opening from the plurality of microchannels at each of the microchannel first ends; and an opposite fluid outlet opening from the plurality of microchannels at each of the microchannel opposite ends, the fluid inlet opening and the first and opposite fluid outlet openings providing that any flow of heat transfer fluid that passes into the plurality of microc
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: March 6, 2018
    Assignee: CoolIT Systems, Inc.
    Inventor: Geoff Sean Lyon
  • Publication number: 20170196116
    Abstract: A fluid heat exchanger for cooling an electronic device can have a plurality of walls. The walls can define a corresponding plurality of microchannels. Each microchannel can extend from a first end to a second end. The plurality of microchannels can define at least two opposed outer microchannels and a centrally located microchannel positioned between the opposed outer microchannels. A fluid inlet passage can be configured to deliver a heat-exchange fluid to each microchannel between the corresponding first end and the corresponding second end of the respective microchannel. A fluid outlet passage can have an enlarged outlet region from the centrally located microchannel compared to a corresponding outlet region from one or both of the opposed outer microchannels. Related methods are disclosed.
    Type: Application
    Filed: March 17, 2017
    Publication date: July 6, 2017
    Inventor: Geoff Sean Lyon
  • Patent number: 9603284
    Abstract: A fluid heat exchanger can define a plurality of microchannels each having a first end and an opposite end and extending substantially parallel with each other microchannel. Each microchannel can define a continuous channel flow path between its respective first end and opposite end. A fluid inlet opening for the plurality of microchannels can be positioned between the microchannel first and opposite ends, a first fluid outlet opening from the plurality of microchannels can be positioned adjacent each of the microchannel first ends, and an opposite fluid outlet opening from the plurality of microchannels can be positioned adjacent each of the microchannel opposite ends such that a flow of heat transfer fluid passing into the plurality of microchannels flows along the full length of each of the plurality of microchannels outwardly from the fluid inlet opening. Related methods are disclosed.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: March 21, 2017
    Assignee: CoolIT Systems, Inc.
    Inventor: Geoff Sean Lyon
  • Publication number: 20170068258
    Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. An electro-mechanical actuator can be selectively activatable responsive to the command.
    Type: Application
    Filed: November 17, 2016
    Publication date: March 9, 2017
    Applicant: COOLIT SYSTEMS, INC.
    Inventors: Geoff Sean Lyon, Mike Holden
  • Publication number: 20170064874
    Abstract: Some modular heat-transfer systems can have an array of at least one heat-transfer element being configured to transfer heat to a working fluid from an operable element. A manifold module can have a distribution manifold and a collection manifold. A decoupleable inlet coupler can be configured to fluidicly couple the distribution manifold to a respective heat-transfer element. A decoupleable outlet coupler can be configured to fluidicly couple the respective heat-transfer element to the collection manifold. An environmental coupler can be configured to receive the working fluid from the collection manifold, to transfer heat to an environmental fluid from the working fluid or to transfer heat from an environmental fluid to the working fluid, and to discharge the working fluid to the distribution manifold.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Applicant: COOLIT SYSTEMS, INC.
    Inventors: Geoff Sean Lyon, Mike Holden, Brydon Gierl
  • Patent number: 9534852
    Abstract: A heat exchange system can include a heat exchange unit and a magnetic element. The heat exchange unit can have a housing and a heat exchange surface configured to thermally couple to a subject of heat exchange. The housing can define an outer surface spaced apart from the heat exchange surface. A magnetic element, a ferrous element, or both, can be positioned within the housing. A coupling agent can have a complementary magnetic element, ferrous element, or both. The coupling agent can interact with the magnetic element, the ferrous element, or both, positioned within the housing. The coupling agent can be coupled to a substrate to retain the heat exchange unit relative to the substrate.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: January 3, 2017
    Assignee: CoolIT Systems, Inc.
    Inventors: Brydon Gierl, Geoff Sean Lyon
  • Publication number: 20160377355
    Abstract: A fluid heat exchanger includes: a heat spreader plate including an intended heat generating component contact region; a plurality of microchannels for directing heat transfer fluid over the heat spreader plate, the plurality of microchannels each having a first end and an opposite end and each of the plurality of microchannels extending substantially parallel with each other microchannel and each of the plurality of microchannels having a continuous channel flow path between their first end and their opposite end; a fluid inlet opening for the plurality of microchannels and positioned between the microchannel first and opposite ends, a first fluid outlet opening from the plurality of microchannels at each of the microchannel first ends; and an opposite fluid outlet opening from the plurality of microchannels at each of the microchannel opposite ends, the fluid inlet opening and the first and opposite fluid outlet openings providing that any flow of heat transfer fluid that passes into the plurality of microc
    Type: Application
    Filed: September 12, 2016
    Publication date: December 29, 2016
    Inventor: Geoff Sean Lyon
  • Patent number: 9496200
    Abstract: Some modular heat-transfer systems can have an array of at least one heat-transfer element being configured to transfer heat to a working fluid from an operable element. A manifold module can have a distribution manifold and a collection manifold. A decoupleable inlet coupler can be configured to fluidicly couple the distribution manifold to a respective heat-transfer element. A decoupleable outlet coupler can be configured to fluidicly couple the respective heat-transfer element to the collection manifold. An environmental coupler can be configured to receive the working fluid from the collection manifold, to transfer heat to an environmental fluid from the working fluid or to transfer heat from an environmental fluid to the working fluid, and to discharge the working fluid to the distribution manifold.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: November 15, 2016
    Assignee: COOLIT SYSTEMS, INC.
    Inventors: Geoff Sean Lyon, Mike Holden, Brydon Gierl
  • Publication number: 20160281704
    Abstract: An observed operational state can include an operational state of one or more system devices. A sensor can emit, in response to a detected observable condition reflective of a given operational state, a simulated signal reflective of a different operational state as a proxy for the detected condition. A controller receiving such a proxy signal can, at least partially responsively to the proxy signal, issue a command corresponding to the given operational state. For example, a leak detector can emit in response to a detected leak, or a flow-rate sensor can emit in response to a detected flow-rate of a liquid, a simulated fan-speed tachometer signal representative of a selected fan speed. At least partially in response to observing a simulated tachometer signal, a controller can issue a system command corresponding to an underlying system condition for which the simulated tachometer signal is a proxy.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 29, 2016
    Applicant: COOLIT SYSTEMS, INC.
    Inventors: Geoff Sean Lyon, Mike Holden
  • Patent number: 9453691
    Abstract: A heat exchanger includes: a heat spreader plate; plural microchannels for directing heat transfer fluid over the heat spreader plate, wherein each microchannel has a first end and an opposite end, extends substantially parallel with each other microchannel, and has a continuous flow path between the first and opposite ends; a fluid inlet opening for the microchannels and positioned between the first and opposite ends, a first fluid outlet opening from each of the microchannel first ends; and an opposite fluid outlet opening from each of the microchannel opposite ends, the fluid inlet opening and the first and opposite fluid outlet openings providing that a flow fluid that passes into the plurality of microchannels, flows along the plurality of microchannels outwardly from the fluid inlet opening. A method of cooling a heat generating component uses a fluid heat exchanger that splits a mass flow of coolant.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: September 27, 2016
    Assignee: COOLIT SYSTEMS, INC.
    Inventor: Geoff Sean Lyon
  • Publication number: 20160146219
    Abstract: An electric pump can have a stator with a stator core defining a plurality of poles, a coil of electrically conductive material extending around each respective one of the plurality of poles, and a stator-cooling chamber, as well as an impeller coupled to a rotor. A first region can be at least partially occupied by the impeller and fluidicly coupled with the stator-cooling chamber to convey a working fluid from the first region into the stator-cooling chamber. The stator-cooling chamber can be configured to facilitate heat transfer from the stator core and/or the coils to the working fluid in the stator-cooling chamber. Cooling systems can incorporate such a pump. Related methods also are disclosed.
    Type: Application
    Filed: October 27, 2015
    Publication date: May 26, 2016
    Inventor: Geoff Sean Lyon
  • Patent number: 9057567
    Abstract: A fluid heat exchanger includes: a heat spreader plate including an intended heat generating component contact region; a plurality of microchannels for directing heat transfer fluid over the heat spreader plate, the plurality of microchannels each having a first end and an opposite end and each of the plurality of microchannels extending substantially parallel with each other microchannel and each of the plurality of microchannels having a continuous channel flow path between their first end and their opposite end; a fluid inlet opening for the plurality of microchannels and positioned between the microchannel first and opposite ends, a first fluid outlet opening from the plurality of microchannels at each of the microchannel first ends; and an opposite fluid outlet opening from the plurality of microchannels at each of the microchannel opposite ends, the fluid inlet opening and the first and opposite fluid outlet openings providing that any flow of heat transfer fluid that passes into the plurality of microc
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: June 16, 2015
    Assignee: COOLIT SYSTEMS, INC.
    Inventor: Geoff Sean Lyon
  • Patent number: 9052252
    Abstract: Leak detectors can have a sensor configured to detect a presence of a working fluid externally of a liquid-based heat-transfer system. The leak detector can also have an electrical circuit configured to emit a signal responsive to a detected presence of the working fluid externally of the liquid-based heat transfer system. Methods of detecting a leak of a working fluid from a liquid-based heat-transfer system can include sensing a presence or an absence of a working fluid externally of a liquid-based heat-transfer system. The methods can include generating a tachometer signal in correspondence with a sensed absence and a sensed presence of the working fluid. The methods can include monitoring the generated tachometer signal.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: June 9, 2015
    Assignee: COOLIT SYSTEMS, INC.
    Inventors: Geoff Sean Lyon, Mike Holden
  • Patent number: 9055697
    Abstract: Systems, devices and methods for generating a virtual mapping of a room are provided. A plurality of racks for housing servers, a plurality of position determining devices and a plurality of temperature sensors can be provided. A computer can be operatively connected to the plurality of position determining devices and the temperature sensors. Each position determining device can be associated with one or more of the temperature sensors. For each of the temperature sensors, position information can be obtained from the position determining device associated with the temperature sensor and the position information used to plot the temperature sensor in a virtual mapping of the room. The virtual mapping can then be used to visually represent a location in the room where a temperature measurement was taken.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: June 9, 2015
    Assignee: COOLIT SYSTEMS, INC.
    Inventor: Geoff Sean Lyon
  • Publication number: 20150083368
    Abstract: A heat exchanger has a liquid-liquid heat exchange region and a gas-liquid heat exchange portion. The heat exchange can define a continuous liquid flow path through the liquid-liquid heat exchange region and through the gas-liquid heat exchange portion. The continuous flow path can first pass through the liquid-liquid heat exchange region and then through the gas-liquid heat exchange portion. In other embodiments, the continuous flow path first passes through the gas-liquid heat exchange portion and then through the liquid-liquid heat exchange portion. In some embodiments, the heat exchanger includes a plurality of liquid-liquid heat exchange regions and a plurality of air-liquid heat exchange regions juxtaposed therewith relative to the continuous flow path.
    Type: Application
    Filed: November 22, 2014
    Publication date: March 26, 2015
    Inventor: Geoff Sean Lyon
  • Publication number: 20140262180
    Abstract: Some modular heat-transfer systems can have an array of at least one heat-transfer element being configured to transfer heat to a working fluid from a heat dissipator. A manifolded heat exchanger can be configured to receive heated working fluid from a plurality of heat-transfer elements and to reject heat to a working fluid of a second fluid circuit. In some embodiments, the heat exchanging manifold can split an incoming flow of working fluid from the second fluid circuit into two or more streams having different bulk flow directions. In some instances, heat exchanger portions of the heat exchanging manifold are configured to provide counter flow heat exchange between the working fluid of the first fluid circuit and the working fluid of the second fluid circuit.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: COOLIT SYSTEMS INC.
    Inventors: Geoff Sean Lyon, Mike Holden, Brydon Gierl
  • Publication number: 20140266744
    Abstract: Leak detectors can have a sensor configured to detect a presence of a working fluid externally of a liquid-based heat-transfer system. The leak detector can also have an electrical circuit configured to emit a signal responsive to a detected presence of the working fluid externally of the liquid-based heat transfer system. Methods of detecting a leak of a working fluid from a liquid-based heat-transfer system can include sensing a presence or an absence of a working fluid externally of a liquid-based heat-transfer system. The methods can include generating a tachometer signal in correspondence with a sensed absence and a sensed presence of the working fluid. The methods can include monitoring the generated tachometer signal.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: COOLIT SYSTEMS INC.
    Inventors: Geoff Sean Lyon, Mike Holden