Patents by Inventor Geoffrey Barrall

Geoffrey Barrall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250144617
    Abstract: Techniques for replacing nanopores within a nanopore based sequencing chip are provided. A first electrolyte solution is added to the external reservoir of the sequencing chip, introducing an osmotic imbalance between the reservoir and the well chamber located on the opposite side of a lipid bilayer membrane. The osmotic imbalance causes the membrane to change shape, and a nanopore within the membrane to be ejected. A second electrolyte solution is then added to the external reservoir to provide replacement nanopores and to restore the membrane shape. The replacement nanopores can be inserted into the membrane, effectively replacing the initial pore without causing the destruction of the membrane.
    Type: Application
    Filed: January 8, 2025
    Publication date: May 8, 2025
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Geoffrey Barrall, Takeshi Harada, Jason Komadina, Pirooz Parvarandeh, Charlotte Yang
  • Patent number: 12226766
    Abstract: Techniques for replacing nanopores within a nanopore based sequencing chip are provided. A first electrolyte solution is added to the external reservoir of the sequencing chip, introducing an osmotic imbalance between the reservoir and the well chamber located on the opposite side of a lipid bilayer membrane. The osmotic imbalance causes the membrane to change shape, and a nanopore within the membrane to be ejected. A second electrolyte solution is then added to the external reservoir to provide replacement nanopores and to restore the membrane shape. The replacement nanopores can be inserted into the membrane, effectively replacing the initial pore without causing the destruction of the membrane.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: February 18, 2025
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Geoffrey Barrall, Takeshi Harada, Jason Komadina, Pirooz Parvarandeh, Charlotte Yang
  • Publication number: 20250012777
    Abstract: Systems and methods for inserting a single pore into a membrane are described herein. A stepped or ramped voltage waveform can be applied across the membranes of the cells of an array, where the voltage waveform starts at first voltage and increases in magnitude over a period of time to a second voltage. The first voltage is selected to be low enough to reduce the risk of damaging the membrane, while the rate of voltage increase is selected to provide sufficient time for the pores to insert into the membranes. Once a pore is inserted into the membrane, the voltage across the membrane rapidly drops, thereby reducing the risk of damaging the membrane even if the applied voltage between the electrodes is further increased.
    Type: Application
    Filed: September 20, 2024
    Publication date: January 9, 2025
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Geoffrey Barrall, George John Carman, Takeshi Harada, Jason Komadina, J. William Maney, Charlotte Yang
  • Publication number: 20240377381
    Abstract: A method of forming a plurality of lipid bilayers over an array of cells in a nanopore based sequencing chip is disclosed. Each of the cells comprises a well. A first salt buffer solution with a first osmolarity is flowed over a cell in the nanopore based sequencing chip to substantially fill a well in the cell with the first salt buffer solution. A lipid and solvent mixture is flowed over the cell to deposit a lipid membrane over the well that encloses the first salt buffer solution in the well. A second salt buffer solution with a second osmolarity is flowed above the well to reduce the thickness of the lipid membrane, wherein the second osmolarity is a lower osmolarity than the first osmolarity such that an osmotic imbalance is created between a first volume inside the well and a second volume outside the well.
    Type: Application
    Filed: May 8, 2024
    Publication date: November 14, 2024
    Inventors: Geoffrey Barrall, Licheng Niu, Pirooz Parvarandeh
  • Patent number: 12123867
    Abstract: Systems and methods for inserting a single pore into a membrane are described herein. A stepped or ramped voltage waveform can be applied across the membranes of the cells of an array, where the voltage waveform starts at first voltage and increases in magnitude over a period of time to a second voltage. The first voltage is selected to be low enough to reduce the risk of damaging the membrane, while the rate of voltage increase is selected to provide sufficient time for the pores to insert into the membranes. Once a pore is inserted into the membrane, the voltage across the membrane rapidly drops, thereby reducing the risk of damaging the membrane even if the applied voltage between the electrodes is further increased.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: October 22, 2024
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Geoffrey Barrall, George John Carman, Takeshi Harada, Jason Komadina, J. William Maney, Jr., Charlotte Yang
  • Patent number: 12000822
    Abstract: A method of forming a plurality of lipid bilayers over an array of cells in a nanopore based sequencing chip is disclosed. Each of the cells comprises a well. A first salt buffer solution with a first osmolarity is flowed over a cell in the nanopore based sequencing chip to substantially fill a well in the cell with the first salt buffer solution. A lipid and solvent mixture is flowed over the cell to deposit a lipid membrane over the well that encloses the first salt buffer solution in the well. A second salt buffer solution with a second osmolarity is flowed above the well to reduce the thickness of the lipid membrane, wherein the second osmolarity is a lower osmolarity than the first osmolarity such that an osmotic imbalance is created between a first volume inside the well and a second volume outside the well.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: June 4, 2024
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Geoffrey Barrall, Licheng Niu, Pirooz Parvarandeh
  • Patent number: 11739380
    Abstract: A method of analyzing a molecule is disclosed. A lipid bilayer is formed such that it divides a first reservoir characterized by a first reservoir osmolarity from a second reservoir characterized by a second reservoir osmolarity. An electrolyte solution is flowed to the first reservoir that tends to make a first change to a ratio of the first reservoir osmolarity to the second reservoir osmolarity. A voltage is applied across the lipid bilayer, wherein the lipid bilayer is inserted with a nanopore, and wherein a net transfer of ions between the first reservoir and the second reservoir tends to make a second change to the ratio of the first reservoir osmolarity to the second reservoir osmolarity, and wherein the first change to the ratio and the second change to the ratio tends to counter-balance each other.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: August 29, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Geoffrey Barrall, Jason Komadina, Marcin Rojek
  • Publication number: 20220042968
    Abstract: Systems and methods for inserting a nanopore into a membrane covering a well are described herein. The membrane can be bowed outwards by establishing an osmotic gradient across the membrane in order to drive fluid into the well, which will increase the amount of fluid in the well and cause the membrane to bow outwards. Nanopore insertion can then be initiated on the bowed membrane.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 10, 2022
    Inventors: Geoffrey Barrall, Ashwini Bhat, Michael Dorwart, Jason Komadina, George Carman, Hannah Kallewaard-Lum, Kyle Umeda, Wooseok Jung, Yufang Wang
  • Publication number: 20210302409
    Abstract: Systems and methods for inserting a single pore into a membrane are described herein. A stepped or ramped voltage waveform can be applied across the membranes of the cells of an array, where the voltage waveform starts at first voltage and increases in magnitude over a period of time to a second voltage. The first voltage is selected to be low enough to reduce the risk of damaging the membrane, while the rate of voltage increase is selected to provide sufficient time for the pores to insert into the membranes. Once a pore is inserted into the membrane, the voltage across the membrane rapidly drops, thereby reducing the risk of damaging the membrane even if the applied voltage between the electrodes is further increased.
    Type: Application
    Filed: June 10, 2021
    Publication date: September 30, 2021
    Inventors: Geoffrey Barrall, George John Carman, Takeshi Harada, Jason Komadina, J. William Maney, JR., Charlotte Yang
  • Patent number: 10947590
    Abstract: A method of analyzing a molecule is disclosed. A lipid bilayer is formed such that it divides a first reservoir characterized by a first reservoir osmolarity from a second reservoir characterized by a second reservoir osmolarity. An electrolyte solution is flowed to the first reservoir that tends to make a first change to a ratio of the first reservoir osmolarity to the second reservoir osmolarity. A voltage is applied across the lipid bilayer, wherein the lipid bilayer is inserted with a nanopore, and wherein a net transfer of ions between the first reservoir and the second reservoir tends to make a second change to the ratio of the first reservoir osmolarity to the second reservoir osmolarity, and wherein the first change to the ratio and the second change to the ratio tends to counter-balance each other.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: March 16, 2021
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Geoffrey Barrall, Jason Komadina, Marcin Rojek
  • Publication number: 20200246791
    Abstract: Techniques for replacing nanopores within a nanopore based sequencing chip are provided. A first electrolyte solution is added to the external reservoir of the sequencing chip, introducing an osmotic imbalance between the reservoir and the well chamber located on the opposite side of a lipid bilayer membrane. The osmotic imbalance causes the membrane to change shape, and a nanopore within the membrane to be ejected. A second electrolyte solution is then added to the external reservoir to provide replacement nanopores and to restore the membrane shape. The replacement nanopores can be inserted into the membrane, effectively replacing the initial pore without causing the destruction of the membrane.
    Type: Application
    Filed: April 20, 2020
    Publication date: August 6, 2020
    Inventors: Geoffrey Barrall, Takeshi Harada, Jason Komadina, Pirooz Parvarandeh, Charlotte Yang
  • Patent number: 10577653
    Abstract: A method of analyzing a molecule is disclosed. A lipid bilayer is formed such that it divides a first reservoir characterized by a first reservoir osmolarity from a second reservoir characterized by a second reservoir osmolarity. An electrolyte solution is flowed to the first reservoir that tends to make a first change to a ratio of the first reservoir osmolarity to the second reservoir osmolarity. A voltage is applied across the lipid bilayer, wherein the lipid bilayer is inserted with a nanopore, and wherein a net transfer of ions between the first reservoir and the second reservoir tends to make a second change to the ratio of the first reservoir osmolarity to the second reservoir osmolarity, and wherein the first change to the ratio and the second change to the ratio tends to counter-balance each other.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: March 3, 2020
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Geoffrey Barrall, Jason Komadina, Marcin Rojek
  • Publication number: 20190227051
    Abstract: A method of forming a plurality of lipid bilayers over an array of cells in a nanopore based sequencing chip is disclosed. Each of the cells comprises a well. A first salt buffer solution with a first osmolarity is flowed over a cell in the nanopore based sequencing chip to substantially fill a well in the cell with the first salt buffer solution. A lipid and solvent mixture is flowed over the cell to deposit a lipid membrane over the well that encloses the first salt buffer solution in the well. A second salt buffer solution with a second osmolarity is flowed above the well to reduce the thickness of the lipid membrane, wherein the second osmolarity is a lower osmolarity than the first osmolarity such that an osmotic imbalance is created between a first volume inside the well and a second volume outside the well.
    Type: Application
    Filed: December 13, 2018
    Publication date: July 25, 2019
    Inventors: Geoffrey Barrall, Licheng Niu, Pirooz Parvarandeh
  • Patent number: 8968539
    Abstract: Disclosed here are methods useful for incorporating protein into lipid bilayers using voltage induced insertion. The methods presented herein can decrease time and costs associated with incorporation of proteins into naturally derived or artificially created lipid bilayers. A method for incorporating a protein capable of translocating a ligand also is disclosed herein.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: March 3, 2015
    Assignee: Electronic Biosciences, Inc.
    Inventors: Ryan Dunnam, Geoffrey Barrall, Melissa Poquette
  • Publication number: 20120255862
    Abstract: Disclosed here are methods useful for incorporating protein into lipid bilayers using voltage induced insertion. The methods presented herein can decrease time and costs associated with incorporation of proteins into naturally derived or artificially created lipid bilayers. A method for incorporating a protein capable of translocating a ligand also is disclosed herein.
    Type: Application
    Filed: March 7, 2012
    Publication date: October 11, 2012
    Applicant: Electronic BioSciences, LLC
    Inventors: Ryan Dunnam, Geoffrey Barrall, Melissa Poquette
  • Publication number: 20080036592
    Abstract: A passenger screening system including a first gradiometer, and a second gradiometer disposed adjacent the first gradiometer. The first and second gradiometers are each configured to operate at a first frequency and a second frequency to facilitate detecting the presence of an explosive material. A method of operating the passenger screening system is also described herein.
    Type: Application
    Filed: March 9, 2007
    Publication date: February 14, 2008
    Inventors: Geoffrey Barral, Alexander Perry, Douglas Taussig
  • Publication number: 20080040385
    Abstract: A hardware-based file system includes multiple linked sub-modules that perform functions ancillary to client data handling. Each sub-module is associated with a metadata cache. A doubly-rooted structure is used to store each file system object at successive checkpoints. Metadata is stored within an object and/or as a separate object. Provisions are made for allocating sparse objects. A delayed write feature is used for writing certain objects into non-volatile storage. Checkpoints can be retained as read-only versions of the file system. Modifications to the file system are accomplished without affecting the contents of retained checkpoints. The file system can be reverted to a retained checkpoint. Multiple file servers can be interconnected as a cluster, and each file server stores requests from another file server. Interconnections between file servers can be dynamically modified. A distributed locking mechanism is used to control access to file system objects stored by the file servers.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 14, 2008
    Applicant: BLUEARC UK LIMITED
    Inventors: Geoffrey Barrall, Simon Benham, Trevor Willis, Christopher Aston
  • Publication number: 20070299959
    Abstract: A network-attached system, device, and method supports multiple storage tiers. Data may be migrated between storage tiers, for example, based on a data migration policy.
    Type: Application
    Filed: June 25, 2007
    Publication date: December 27, 2007
    Applicant: BLUEARC UK LIMITED
    Inventors: Brett Penny, Neil Clarkson, Geoffrey Barrall
  • Publication number: 20070266037
    Abstract: A filesystem-aware storage system locates and analyzes host filesystem data structures in order to determine storage usage of the host filesystem. To this end, the storage system might locate an operating system partition, parse the operating system partion to locate its data structures, and parse the operating system data structures to locate the host filesystem data structures. The storage system manages data storage based on the storage usage of the host file system. The storage system can use the storage usage information to identify storage areas that are no longer being used by the host filesystem and reclaim those areas for additional data storage capacity. Also, the storage system can identify the types of data stored by the host filesystem and manage data storage based on the data types, such as selecting a storage layout and/or an encoding scheme for the data based on the data type.
    Type: Application
    Filed: May 3, 2007
    Publication date: November 15, 2007
    Applicant: Data Robotics Incorporated
    Inventors: Julian Terry, Geoffrey Barrall, Neil Clarkson
  • Publication number: 20060174157
    Abstract: A dynamically expandable and contractible fault-tolerant storage system employs a virtual hot spare that is created from unused storage capacity across a plurality of storage devices. This unused storage capacity is available if and when a storage device fails for storage of data recovered from the remaining storage device(s). On an ongoing basis, the storage system may determine the amount of unused storage capacity that would be required for the virtual hot spare (e.g., based on the number of storage devices, the capacities of the various storage devices, the amount of data stored, and the manner in which the data is stored) and generate a signal if additional storage capacity is needed for a virtual hot spare.
    Type: Application
    Filed: November 4, 2005
    Publication date: August 3, 2006
    Inventors: Geoffrey Barrall, Julian Terry, Kenneth Rosen