Patents by Inventor George Church

George Church has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150353999
    Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.
    Type: Application
    Filed: May 26, 2015
    Publication date: December 10, 2015
    Inventors: Jeremy Agresti, Liang-Yin Chu, David A. Weitz, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George Church
  • Publication number: 20150307931
    Abstract: The invention relates to a method for detecting a double-stranded region in a nucleic acid by (1) providing two separate, adjacent pools of a medium and a interface between the two pools, the interface having a channel so dimensioned as to allow sequential monomer-by-monomer passage of a single-stranded nucleic acid, but not of a double-stranded nucleic acid, from one pool to the other pool; (2) placing a nucleic acid polymer in one of the two pools; and (3) taking measurements as each of the nucleotide monomers of the single-stranded nucleic acid polymer passes through the channel so as to differentiate between nucleotide monomers that are hybridized to another nucleotide monomer before entering the channel and nucleotide monomers that are not hybridized to another nucleotide monomer before entering the channel.
    Type: Application
    Filed: January 9, 2014
    Publication date: October 29, 2015
    Inventors: Mark AKESON, Daniel BRANTON, George CHURCH, David W. DEAMER
  • Patent number: 9163281
    Abstract: The invention generally relates to methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction. In certain embodiments, methods of the invention involve obtaining a template nucleic acid, incorporating a pair of sequence identifiers into the template, and sequencing the template.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: October 20, 2015
    Assignee: Good Start Genetics, Inc.
    Inventors: Gregory Porreca, Mark Umbarger, George Church
  • Publication number: 20150232864
    Abstract: The invention provides methods and compositions for inhibiting proliferation of a modified host cell outside of a designated process condition. Compositions and methods for providing a host cell having reduced viability when exposed to natural conditions external to a controlled environment are disclosed.
    Type: Application
    Filed: March 9, 2015
    Publication date: August 20, 2015
    Inventors: George Church, Frank A. Skraly, Brian D. Green, Jacob C. Harrison
  • Patent number: 9068210
    Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: June 30, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Jeremy Agresti, Liang-Yin Chu, David A. Weitz, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George Church
  • Patent number: 9029085
    Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: May 12, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Jeremy Agresti, Liang-Yin Chu, David A. Weitz, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George Church
  • Patent number: 9017948
    Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: April 28, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Jeremy Agresti, Liang-Yin Chu, David A. Weitz, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George Church
  • Patent number: 9005977
    Abstract: The invention provides methods and compositions for inhibiting proliferation of a modified host cell outside of a designated process condition. Compositions and methods for providing a host cell having reduced viability when exposed to natural conditions external to a controlled environment are disclosed.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: April 14, 2015
    Assignee: Joule Unlimited Technologies, Inc.
    Inventors: George Church, Frank A. Skraly, Brian D. Green, Jacob C. Harrison
  • Publication number: 20140309119
    Abstract: Disclosed are methods for synthesizing and/or assembling at least one polynucleotide product having a predefined sequence from a plurality of different oligonucleotides. In exemplary embodiments, the methods involve synthesis and/or amplification of different oligonucleotides immobilized on a solid support, release of synthesized/amplified oligonucleotides in solution to form droplets, recognition and removal of error-containing oligonucleotides, moving or combining two droplets to allow hybridization and/or ligation between two different oligonucleotides, and further chain extension reaction following hybridization and/or ligation to hierarchically generate desired length of polynucleotide products.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 16, 2014
    Inventors: Joseph Jacobson, George Church, Larry Li-Yang Chu
  • Patent number: 8808986
    Abstract: Disclosed are methods for synthesizing and/or assembling at least one polynucleotide product having a predefined sequence from a plurality of different oligonucleotides. In exemplary embodiments, the methods involve synthesis and/or amplification of different oligonucleotides immobilized on a solid support, release of synthesized/amplified oligonucleotides in solution to form droplets, recognition and removal of error-containing oligonucleotides, moving or combining two droplets to allow hybridization and/or ligation between two different oligonucleotides, and further chain extension reaction following hybridization and/or ligation to hierarchically generate desired length of polynucleotide products.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: August 19, 2014
    Assignee: Gen9, Inc.
    Inventors: Joseph Jacobson, George Church, Larry Li-Yang Chu
  • Publication number: 20140199730
    Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.
    Type: Application
    Filed: February 4, 2014
    Publication date: July 17, 2014
    Applicant: President and Fellows of Harvard College
    Inventors: Jeremy Agresti, Liang-Yin Chu, David A. Weitz, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George Church
  • Publication number: 20140199731
    Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.
    Type: Application
    Filed: February 4, 2014
    Publication date: July 17, 2014
    Applicant: President and Fellows of Harvard College
    Inventors: Jeremy Agresti, Liang-Yin Chu, David A. Weitz, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George Church
  • Publication number: 20130274146
    Abstract: The invention generally relates to methods of performing a capture reaction. In certain embodiments, the method involves obtaining a nucleic acid, fragmenting the nucleic acid, and capturing a target sequence on the nucleic acid fragment using a capture moiety, such as a molecular inversion probe.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 17, 2013
    Applicant: GOOD START GENETICS, INC.
    Inventors: Mark Umbarger, Gregory Porreca, Charles Towne, George Church
  • Publication number: 20130245339
    Abstract: Compositions and methods for production of fatty alcohols using recombinant microorganisms are provided as well as fatty alcohol compositions produced by such methods.
    Type: Application
    Filed: April 25, 2013
    Publication date: September 19, 2013
    Inventors: Jay D. KEASLING, Zhihao HU, Chris SOMERVILLE, George CHURCH, David BERRY, Lisa FRIEDMAN, Andreas SCHIRMER, Shane BRUBAKER, Stephen B. DEL CARDAYRE
  • Publication number: 20130224859
    Abstract: Provided herein are DNA origami devices useful in the targeted delivery of biologically active entities to specific cell populations.
    Type: Application
    Filed: November 4, 2011
    Publication date: August 29, 2013
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Ido Bachelet, Shawn Douglas, George Church
  • Publication number: 20120315670
    Abstract: Methods and compositions are provided for manipulating the genome of host cell to produce at least one exogenous gene product. Also provided are methods and composition for producing a programmable cell comprising a plurality of exogenous genes, wherein each exogenous gene is under the control of a disrupted regulatory sequence and wherein the disrupted regulatory sequences are restored by in vivo recombination. Preferably, the gene of interest is under the control of a genetically altered promoter which sequence recombination effects the expression of the exogenous gene(s).
    Type: Application
    Filed: November 2, 2010
    Publication date: December 13, 2012
    Applicant: Gen9, Inc.
    Inventors: Joseph Jacobson, George Church
  • Publication number: 20120160687
    Abstract: The invention relates to a method for detecting a double-stranded region in a nucleic acid by (1) providing two separate, adjacent pools of a medium and a interface between the two pools, the interface having a channel so dimensioned as to allow sequential monomer-by-monomer passage of a single-stranded nucleic acid, but not of a double-stranded nucleic acid, from one pool to the other pool; (2) placing a nucleic acid polymer in one of the two pools; and (3) taking measurements as each of the nucleotide monomers of the single-stranded nucleic acid polymer passes through the channel so as to differentiate between nucleotide monomers that are hybridized to another nucleotide monomer before entering the channel and nucleotide monomers that are not hybridized to another nucleotide monomer before entering the channel.
    Type: Application
    Filed: July 20, 2011
    Publication date: June 28, 2012
    Applicant: President and Fellows of Harvard College
    Inventors: Mark Akeson, Daniel Branton, George Church, David W. Deamer
  • Publication number: 20120164630
    Abstract: The invention generally relates to methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction. In certain embodiments, methods of the invention involve obtaining a template nucleic acid, incorporating a pair of sequence identifiers into the template, and sequencing the template.
    Type: Application
    Filed: April 7, 2011
    Publication date: June 28, 2012
    Applicant: GOOD START GENETICS, INC.
    Inventors: Gregory Porreca, Mark Umbarger, George Church
  • Publication number: 20120142979
    Abstract: Compositions and methods for production of fatty alcohols using recombinant microorganisms are provided as well as fatty alcohol compositions produced by such methods.
    Type: Application
    Filed: November 22, 2011
    Publication date: June 7, 2012
    Applicant: LS9, INC.
    Inventors: Jay D. KEASLING, Zhihao Hu, Chris Somerville, George Church, David Berry, Lisa Friedman, Andreas Schirmer, Shane Brubaker, Stephen B. Del Cardayre
  • Publication number: 20120077273
    Abstract: The invention provides methods and compositions for inhibiting proliferation of a modified host cell outside of a designated process condition. Compositions and methods for providing a host cell having reduced viability when exposed to natural conditions external to a controlled environment are disclosed.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 29, 2012
    Applicant: JOULE UNLIMITED TECHNOLOGIES, INC.
    Inventors: George Church, Frank A. Skraly, Brian D. Green, Jacob C. Harrison