Patents by Inventor George D. Yancopoulos

George D. Yancopoulos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964016
    Abstract: The present disclosure provides methods for treating allergy comprising selecting a patient with an allergy and administering a therapeutically effective amount of an IL-4/IL-13 pathway inhibitor (e.g., an anti-IL-4 receptor antibody or antigen-binding fragment thereof) in combination with a therapeutically effective amount of an agent that depletes plasma cells (e.g., an anti-BCMA/anti-CD3 bispecific antibody). In certain embodiments, a plasma cell ablating agent such as an anti-BCMA/anti-CD3 bispecific antibody ablates the plasma cells, including IgE+ plasma cells, while the IL-4/IL-13 pathway inhibitor prevents the generation of new IgE+ plasma cells, thus eliminating allergen-specific IgE in the patient.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: April 23, 2024
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: Seblewongel Asrat, Andre Limnander, Jamie Orengo, Andrew J. Murphy, George D. Yancopoulos
  • Publication number: 20240123030
    Abstract: The present invention provides methods for treating angiogenic eye disorders by sequentially administering multiple doses of a VEGF antagonist to a patient. The methods of the present invention include the administration of multiple doses of a VEGF antagonist to a patient at a frequency of once every 8 or more weeks. The methods of the present invention are useful for the treatment of angiogenic eye disorders such as age related macular degeneration, diabetic retinopathy, diabetic macular edema, central retinal vein occlusion, branch retinal vein occlusion, and corneal neovascularization.
    Type: Application
    Filed: October 27, 2023
    Publication date: April 18, 2024
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventor: George D. YANCOPOULOS
  • Publication number: 20240099278
    Abstract: Genetically modified non-human animals are provided that may be used to model human hematopoietic cell development, function, or disease. The genetically modified non-human animals comprise a nucleic acid encoding human IL-6 operably linked to an IL-6 promoter. In some instances, the genetically modified non-human animal expressing human IL-6 also expresses at least one of human M-CSF, human IL-3, human GM-CSF, human SIRPa or human TPO. In some instances, the genetically modified non-human animal is immunodeficient. In some such instances, the genetically modified non-human animal is engrafted with healthy or diseased human hematopoietic cells. Also provided are methods for using the subject genetically modified non-human animals in modeling human hematopoietic cell development, function, and/or disease, as well as reagents and kits thereof that find use in making the subject genetically modified non-human animals and/or practicing the subject methods.
    Type: Application
    Filed: August 21, 2023
    Publication date: March 28, 2024
    Inventors: Richard Flavell, Till Strowig, Markus G. Manz, Chiara Borsotti, Madhav Dhodapkar, Andrew J. Murphy, Sean Stevens, George D. Yancopoulos
  • Patent number: 11912767
    Abstract: The present invention provides multispecific antibodies that bind to EGFR and CD28 (EGFR×CD28) as well as anti-EGFR antibodies. Such antibodies may be combined with a further therapeutic agent such as an anti-PD1 antibody. Methods for treating cancers (e.g., EGFR-expressing cancer) by administering the antibodies (e.g., and combinations thereof with anti-PD1) are also provided. The EGFR×CD28 antibodies of the present invention embody a tumor-targeted immunotherapeutic modality combined with PD-1 inhibition. These bispecific antibodies bind a tumor-specific antigen (TSA) (EGFR) with one arm and the co-stimulatory receptor, CD28, on T-cells with the other arm. Combination therapy with PD-1 inhibitors specifically potentiated intra-tumoral T cell activation, promoting an effector memory-like T cell phenotype without systemic cytokine secretion in a variety of syngeneic and human tumor xenograft models.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: February 27, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Dimitris Skokos, Andrew J. Murphy, George D. Yancopoulos, Chia-Yang Lin, Lauric Haber
  • Publication number: 20240052365
    Abstract: Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR/Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 15, 2024
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Publication number: 20240043504
    Abstract: The present disclosure provides antibodies and antigen-binding fragments thereof that bind specifically to a coronavirus spike protein and methods of using such antibodies and fragments for treating or preventing viral infections (e.g., coronavirus infections).
    Type: Application
    Filed: May 26, 2021
    Publication date: February 8, 2024
    Inventors: Alina Baum, Benjamin Fulton, Christos Kyratsous, George D. Yancopoulos
  • Patent number: 11866503
    Abstract: The present invention provides methods for treating inflammatory diseases, or conditions associated with, or resulting in part from, elevated levels of IL-33 and IL-4, in particular inflammatory lung disorders. The methods of the present invention comprise administering to a subject in need thereof one or more therapeutically effective doses of an IL-33 antagonist alone or in combination with one or more therapeutically effective doses of an IL-4R antagonist. In certain embodiments, the methods of the present invention include use of the antagonists to treat any inflammatory disease or condition mediated in part by enhanced IL-33-mediated signaling and IL-4-mediated signaling.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: January 9, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Jamie M. Orengo, Jeanne Allinne, Andrew J. Murphy, George D. Yancopoulos
  • Patent number: 11820997
    Abstract: Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR/Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: November 21, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Publication number: 20230348569
    Abstract: The present disclosure provides antibodies and antigen-binding fragments thereof that bind specifically to a coronavirus spike protein and methods of using such antibodies and fragments for treating or preventing viral infections (e.g., coronavirus infections).
    Type: Application
    Filed: June 29, 2023
    Publication date: November 2, 2023
    Inventors: Robert BABB, Alina BAUM, Gang CHEN, Cindy GERSON, Johanna HANSEN, Tammy HUANG, Christos KYRATSOUS, Wen-Yi LEE, Marine MALBEC, Andrew MURPHY, William OLSON, Neil STAHL, George D. YANCOPOULOS
  • Publication number: 20230332185
    Abstract: Compositions and methods are provided for creating and promoting biallelic targeted modifications to genomes within cells and for producing non-human animals comprising the modified genomes. Also provided are compositions and methods for modifying a genome within a cell that is heterozygous for an allele to become homozygous for that allele. The methods make use of Cas proteins and two or more guide RNAs that target different locations within the same genomic target locus. Also provided are methods of identifying cells with modified genomes.
    Type: Application
    Filed: May 15, 2023
    Publication date: October 19, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Ka-Man Venus Lai, Wojtek Auerbach, Gustavo Droguett, Anthony Gagliardi, David M. Valenzuela, Vera Voronina, Lynn Macdonald, Andrew J. Murphy, George D. Yancopoulos
  • Publication number: 20230322927
    Abstract: The present invention provides multispecific antibodies that bind to EGFR and CD28 (EGFRxCD28) as well as anti-EGFR antibodies. Such antibodies may be combined with a further therapeutic agent such as an anti-PD1 antibody. Methods for treating cancers (e.g., EGFR-expressing cancer) by administering the antibodies (e.g., and combinations thereof with anti-PD1) are also provided. The EGFRxCD28 antibodies of the present invention embody a tumor-targeted immunotherapeutic modality combined with PD-1 inhibition. These bispecific antibodies bind a tumor-specific antigen (TSA) (EGFR) with one arm and the co-stimulatory receptor, CD28, on T-cells with the other arm. Combination therapy with PD-1 inhibitors specifically potentiated intra-tumoral T cell activation, promoting an effector memory-like T cell phenotype without systemic cytokine secretion in a variety of syngeneic and human tumor xenograft models.
    Type: Application
    Filed: February 7, 2023
    Publication date: October 12, 2023
    Inventors: Dimitris Skokos, Andrew J. Murphy, George D. Yancopoulos, Chia-yang Lin, Lauric Haber
  • Patent number: 11778995
    Abstract: Genetically modified non-human animals are provided that may be used to model human hematopoietic cell development, function, or disease. The genetically modified non-human animals comprise a nucleic acid encoding human IL-6 operably linked to an IL-6 promoter. In some instances, the genetically modified non-human animal expressing human IL-6 also expresses at least one of human M-CSF, human IL-3, human GM-CSF, human SIRPa or human TPO. In some instances, the genetically modified non-human animal is immunodeficient. In some such instances, the genetically modified non-human animal is engrafted with healthy or diseased human hematopoietic cells. Also provided are methods for using the subject genetically modified non-human animals in modeling human hematopoietic cell development, function, and/or disease, as well as reagents and kits thereof that find use in making the subject genetically modified non-human animals and/or practicing the subject methods.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: October 10, 2023
    Assignees: Regeneron Pharmaceuticals, Inc., Yale University, Institute for Research in Biomedicine (IRB)
    Inventors: Richard Flavell, Till Strowig, Markus G. Manz, Chiara Borsotti, Madhav Dhodapkar, Andrew J. Murphy, Sean Stevens, George D. Yancopoulos
  • Publication number: 20230312699
    Abstract: The present invention provides antibodies that bind to Activin A and methods of using the same. According to certain embodiments of the invention, the antibodies are fully human antibodies that bind to Activin A with high affinity. The antibodies of the invention are useful for the treatment of diseases and disorders characterized by decreased muscle mass or strength, such as sarcopenia, cachexia, muscle injury, muscle wasting/atrophy, cancer, fibrosis, and weight loss. The antibodies of the invention are also useful in combination with Growth and Differentiation Factor 8 (GDF8) binding proteins for the treatment of diseases and disorders characterized by decreased muscle mass or strength. The antibodies of the invention are also useful for the prevention, treatment, or amelioration of disorders and diseases caused by, promoted by, exacerbated by, and/or aggravated by Activin A, such as renal fibrosis.
    Type: Application
    Filed: November 28, 2022
    Publication date: October 5, 2023
    Inventors: Jesper Gromada, Esther Latres, Andrew J. Murphy, George D. Yancopoulos, Lori C. Morton
  • Publication number: 20230303696
    Abstract: The present invention provides bispecific antigen-binding molecules comprising a first antigen-binding domain that specifically binds human CD28, and a second antigen-binding molecule that specifically binds human PSMA. In certain embodiments, the bispecific antigen- binding molecules of the present invention are capable of inhibiting the growth of tumors expressing PSMA, such as prostate tumors. The antibodies and bispecific antigen-binding molecules of the invention are useful for the treatment of diseases and disorders in which an up-regulated or induced targeted immune response is desired and/or therapeutically beneficial.
    Type: Application
    Filed: December 7, 2022
    Publication date: September 28, 2023
    Inventors: Andrew J. Murphy, Dimitris Skokos, Janelle Waite, Erica Ullman, Aynur Hermann, Eric Smith, Lauric Haber, George D. Yancopoulos
  • Publication number: 20230292721
    Abstract: Genetically modified non-human animals expressing human SIRP? and human IL-15 from the non-human animal genome are provided. Also provided are methods for making non-human animals expressing human SIRP? and human IL-15 from the non-human animal genome, and methods for using non-human animals expressing human SIRP? and human IL-15 from the non-human animal genome. These animals and methods find many uses in the art, including, for example, in modeling human T cell and/or natural killer (NK) cell development and function, in modeling human pathogen infection of human T cells and/or NK cells, and in various in vivo screens.
    Type: Application
    Filed: January 9, 2023
    Publication date: September 21, 2023
    Inventors: Dietmar Herndler-Brandstetter, Richard A. Flavell, Davor Frleta, Cagan Gurer, Markus Gabriel Manz, Andrew J. Murphy, Noah W. Palm, Liang Shan, Sean Stevens, Till Strowig, George D. Yancopoulos, Marcel de Zoete
  • Publication number: 20230279113
    Abstract: The present invention provides bispecific antigen-binding molecules comprising a first antigen-binding domain that specifically binds human CD28, and a second antigen-binding molecule that specifically binds human MUC16. In certain embodiments, the bispecific antigen-binding molecules of the present invention are capable of inhibiting the growth of tumors expressing MUC16, such as ovarian tumors. The antibodies and bispecific antigen-binding molecules of the invention are useful for the treatment of diseases and disorders in which an up-regulated or induced targeted immune response is desired and/or therapeutically beneficial.
    Type: Application
    Filed: August 17, 2022
    Publication date: September 7, 2023
    Inventors: Andrew J. Murphy, Dimitris Skokos, Janelle Waite, Erica Ullman, Aynur Hermann, Eric Smith, Lauric Haber, George D. Yancopoulos, Alison Crawford
  • Publication number: 20230272078
    Abstract: The present invention provides bispecific antigen-binding molecules comprising a first antigen-binding domain that specifically binds human CD28, and a second antigen-binding molecule that specifically binds human PSMA. In certain embodiments, the bispecific antigen-binding molecules of the present invention are capable of inhibiting the growth of tumors expressing PSMA, such as prostate tumors. The antibodies and bispecific antigen-binding molecules of the invention are useful for the treatment of diseases and disorders in which an up-regulated or induced targeted immune response is desired and/or therapeutically beneficial.
    Type: Application
    Filed: December 7, 2022
    Publication date: August 31, 2023
    Inventors: Andrew J. Murphy, Dimitris Skokos, Janelle Waite, Erica Ullman, Aynur Hermann, Eric Smith, Lauric Haber, George D. Yancopoulos
  • Patent number: 11732030
    Abstract: The present disclosure provides antibodies and antigen-binding fragments thereof that bind specifically to a coronavirus spike protein and methods of using such antibodies and fragments for treating or preventing viral infections (e.g., coronavirus infections).
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: August 22, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Robert Babb, Alina Baum, Gang Chen, Cindy Gerson, Johanna Hansen, Tammy Huang, Christos Kyratsous, Wen-Yi Lee, Marine Malbec, Andrew Murphy, William Olson, Neil Stahl, George D. Yancopoulos
  • Patent number: 11697828
    Abstract: Compositions and methods are provided for creating and promoting biallelic targeted modifications to genomes within cells and for producing non-human animals comprising the modified genomes. Also provided are compositions and methods for modifying a genome within a cell that is heterozygous for an allele to become homozygous for that allele. The methods make use of Cas proteins and two or more guide RNAs that target different locations within the same genomic target locus. Also provided are methods of identifying cells with modified genomes.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: July 11, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: David Frendewey, Ka-Man Venus Lai, Wojtek Auerbach, Gustavo Droguett, Anthony Gagliardi, David M. Valenzuela, Vera Voronina, Lynn Macdonald, Andrew J. Murphy, George D. Yancopoulos
  • Publication number: 20230203141
    Abstract: The present invention provides methods for treating an allergy by administering one or more antibodies that bind specifically to the allergen. In certain embodiments, the antibodies useful for treating an allergen, bind specifically to the cat allergen, Fel d1. According to certain embodiments of the invention, the antibodies are fully human antibodies that bind to Fel d1. The antibodies of the invention are useful for binding to the Fel d1 allergen in vivo, thus preventing binding of the Fel d1 allergen to pre-formed IgE on the surface of mast cells or basophils. In doing so, the antibodies act to prevent the release of histamine and other inflammatory mediators from mast cells and/or basophils, thus ameliorating the untoward response to the cat allergen in sensitized individuals.
    Type: Application
    Filed: May 4, 2022
    Publication date: June 29, 2023
    Inventors: Jamie M. Orengo, Narnita A. Gandhi, Allen Radin, Ana Kostic, Andrew J. Murphy, George D. Yancopoulos