Patents by Inventor George D. Yancopoulos

George D. Yancopoulos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10975139
    Abstract: The present disclosure provides antibodies and antigen-binding fragments thereof that bind specifically to a coronavirus spike protein and methods of using such antibodies and fragments for treating or preventing viral infections (e.g., coronavirus infections).
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: April 13, 2021
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Robert Babb, Alina Baum, Gang Chen, Cindy Gerson, Johanna Hansen, Tammy Huang, Christos Kyratsous, Wen-Yi Lee, Marine Malbec, Andrew Murphy, William Olson, Neil Stahl, George D. Yancopoulos
  • Publication number: 20210100228
    Abstract: Genetically modified non-human animals are provided that may be used to model human hematopoietic cell development, function, or disease. The genetically modified non-human animals comprise a nucleic acid encoding human IL-6 operably linked to an IL-6 promoter. In some instances, the genetically modified non-human animal expressing human IL-6 also expresses at least one of human M-CSF, human IL-3, human GM-CSF, human SIRPa or human TPO. In some instances, the genetically modified non-human animal is immunodeficient. In some such instances, the genetically modified non-human animal is engrafted with healthy or diseased human hematopoietic cells. Also provided are methods for using the subject genetically modified non-human animals in modeling human hematopoietic cell development, function, and/or disease, as well as reagents and kits thereof that find use in making the subject genetically modified non-human animals and/or practicing the subject methods.
    Type: Application
    Filed: August 21, 2020
    Publication date: April 8, 2021
    Inventors: Richard Flavell, Till Strowig, Markus G. Manz, Chiara Borsotti, Madhav Dhodapkar, Andrew J. Murphy, Sean Stevens, George D. Yancopoulos
  • Patent number: 10954289
    Abstract: The present disclosure provides antibodies and antigen-binding fragments thereof that bind specifically to a coronavirus spike protein and methods of using such antibodies and fragments for treating or preventing viral infections (e.g., coronavirus infections).
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: March 23, 2021
    Assignee: Regeneren Pharmaceuticals, Inc.
    Inventors: Robert Babb, Alina Baum, Gang Chen, Cindy Gerson, Johanna Hansen, Tammy Huang, Christos Kyratsous, Wen-Yi Lee, Marine Malbec, Andrew Murphy, William Olson, Neil Stahl, George D. Yancopoulos
  • Publication number: 20210079105
    Abstract: The present invention provides methods for treating inflammatory diseases, or conditions associated with, or resulting in part from, elevated levels of IL-33 and IL-4, in particular inflammatory lung disorders. The methods of the present invention comprise administering to a subject in need thereof one or more therapeutically effective doses of an IL-33 antagonist alone or in combination with one or more therapeutically effective doses of an IL-4R antagonist. In certain embodiments, the methods of the present invention include use of the antagonists to treat any inflammatory disease or condition mediated in part by enhanced IL-33-mediated signaling and IL-4-mediated signaling.
    Type: Application
    Filed: September 22, 2020
    Publication date: March 18, 2021
    Inventors: Jamie M. Orengo, Jeanne Allinne, Andrew J. Murphy, George D. Yancopoulos
  • Patent number: 10935554
    Abstract: The present invention provides in vitro and in vivo diagnostic tests and methods for determining the safety, efficacy, or outcome of allergen-specific immunotherapy (SIT) in a patient. The present invention also provides for the measurement of allergen specific IgG and IgE in a patient tissue sample, or extract thereof, or in a biological fluid or blood sample, and determining whether the allergen-specific immunoglobulins contained in the patient sample(s), upon injection into an allergen-sensitized animal, will protect the animal following challenge with the allergen. The invention also provides methods for determining whether a patient suffering from an allergy is responsive to therapy with one or more therapeutic antibodies specific for the allergen.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: March 2, 2021
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: George D. Yancopoulos, Jamie Orengo
  • Publication number: 20210023173
    Abstract: The present invention provides methods for treating angiogenic eye disorders by sequentially administering multiple doses of a VEGF antagonist to a patient. The methods of the present invention include the administration of multiple doses of a VEGF antagonist to a patient at a frequency of once every 8 or more weeks. The methods of the present invention are useful for the treatment of angiogenic eye disorders such as age related macular degeneration, diabetic retinopathy, diabetic macular edema, central retinal vein occlusion, branch retinal vein occlusion, and corneal neovascularization.
    Type: Application
    Filed: October 16, 2020
    Publication date: January 28, 2021
    Applicant: REGENERON PHARMACEUTICALS, INC.
    Inventor: George D. YANCOPOULOS
  • Patent number: 10888601
    Abstract: The present invention provides methods for treating angiogenic eye disorders by sequentially administering multiple doses of a VEGF antagonist to a patient. The methods of the present invention include the administration of multiple doses of a VEGF antagonist to a patient at a frequency of once every 8 or more weeks. The methods of the present invention are useful for the treatment of angiogenic eye disorders such as age related macular degeneration, diabetic retinopathy, diabetic macular edema, central retinal vein occlusion, branch retinal vein occlusion, and corneal neovascularization.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: January 12, 2021
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventor: George D. Yancopoulos
  • Patent number: 10857205
    Abstract: The present invention provides methods for treating angiogenic eye disorders by sequentially administering multiple doses of a VEGF antagonist to a patient. The methods of the present invention include the administration of multiple doses of a VEGF antagonist to a patient at a frequency of once every 8 or more weeks. The methods of the present invention are useful for the treatment of angiogenic eye disorders such as age related macular degeneration, diabetic retinopathy, diabetic macular edema, central retinal vein occlusion, branch retinal vein occlusion, and corneal neovascularization.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: December 8, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventor: George D. Yancopoulos
  • Patent number: 10828345
    Abstract: The present invention provides methods for treating angiogenic eye disorders by sequentially administering multiple doses of a VEGF antagonist to a patient. The methods of the present invention include the administration of multiple doses of a VEGF antagonist to a patient at a frequency of once every 8 or more weeks. The methods of the present invention are useful for the treatment of angiogenic eye disorders such as age related macular degeneration, diabetic retinopathy, diabetic macular edema, central retinal vein occlusion, branch retinal vein occlusion, and corneal neovascularization.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: November 10, 2020
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventor: George D. Yancopoulos
  • Patent number: 10815305
    Abstract: The present invention provides methods for treating inflammatory diseases, or conditions associated with, or resulting in part from, elevated levels of IL-33 and IL-4, in particular inflammatory lung disorders. The methods of the present invention comprise administering to a subject in need thereof one or more therapeutically effective doses of an IL-33 antagonist alone or in combination with one or more therapeutically effective doses of an IL-4R antagonist. In certain embodiments, the methods of the present invention include use of the antagonists to treat any inflammatory disease or condition mediated in part by enhanced IL-33-mediated signaling and IL-4-mediated signaling.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: October 27, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Jamie M. Orengo, Jeanne Allinne, Andrew J. Murphy, George D. Yancopoulos
  • Publication number: 20200326349
    Abstract: A method of detecting and isolating cells that produce a secreted protein of interest (POI), for example, an antibody, comprising: a) providing a eukaryotic cell comprising (i) a nucleic acid encoding the POI, and (ii) a nucleic acid encoding a cell surface capture molecule, which comprises a membrane anchor and is capable of binding the POI; (b) culturing the cell under conditions in which the POI and cell surface capture molecule are expressed, and a POI-cell surface capture molecule complex is formed intracellularly and displayed on the cell surface; c) detecting the surface-displayed POI by contacting the cells with a detection molecule, which binds the POI; and d) isolating cells based on the detection molecule.
    Type: Application
    Filed: February 12, 2020
    Publication date: October 15, 2020
    Inventors: James P. Fandl, Gang Chen, Neil Stahl, George D. Yancopoulos
  • Publication number: 20200318136
    Abstract: Methods and compositions are provided for integrating coding sequences for antigen-binding proteins such as broadly neutralizing antibodies into a safe harbor locus such as an albumin locus in an animal in vivo.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 8, 2020
    Inventors: Cheng Wang, Suzanne Hartford, Guochun Gong, Christos Kyratsous, Brian Zambrowicz, George D. Yancopoulos
  • Patent number: 10785966
    Abstract: Genetically modified mice comprising a nucleic acid sequence encoding a human M-CSF protein are provided. Also provided are genetically modified mice comprising a nucleic acid sequence encoding a human M-CSF protein that have been engrafted with human cells such as human hematopoietic cells, and methods for making such engrafted mice. These mice find use in a number of applications, such as in modeling human immune disease and pathogen infection; in in vivo screens for agents that modulate hematopoietic cell development and/or activity, e.g. in a healthy or a diseased state; in in vivo screens for agents that are toxic to hematopoietic cells; in in vivo screens for agents that prevent against, mitigate, or reverse the toxic effects of toxic agents on hematopoietic cells; in in vivo screens of human hematopoietic cells from an individual to predict the responsiveness of an individual to a disease therapy, etc.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: September 29, 2020
    Assignees: Regeneron Pharmaceuticals, Inc., Yale University, Institute for Research in Biomedicine (IRB)
    Inventors: Andrew J. Murphy, Sean Stevens, Chozhavendan Rathinam, Elizabeth Eynon, Markus Manz, Richard Flavell, George D. Yancopoulos
  • Patent number: 10785968
    Abstract: Genetically modified non-human animals are provided that may be used to model human hematopoietic cell development, function, or disease. The genetically modified non-human animals comprise a nucleic acid encoding human IL-6 operably linked to an IL-6 promoter. In some instances, the genetically modified non-human animal expressing human IL-6 also expresses at least one of human M-CSF, human IL-3, human GM-CSF, human SIRPa or human TPO. In some instances, the genetically modified non-human animal is immunodeficient. In some such instances, the genetically modified non-human animal is engrafted with healthy or diseased human hematopoietic cells. Also provided are methods for using the subject genetically modified non-human animals in modeling human hematopoietic cell development, function, and/or disease, as well as reagents and kits thereof that find use in making the subject genetically modified non-human animals and/or practicing the subject methods.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: September 29, 2020
    Assignees: Regeneron Pharmaceuticals, Inc., Yale University, Institute for Research in Biomedicine (IRB)
    Inventors: Richard Flavell, Till Strowig, Markus G. Manz, Chiara Borsotti, Madhav Dhodapkar, Andrew J. Murphy, Sean Stevens, George D. Yancopoulos
  • Patent number: 10787501
    Abstract: The present disclosure provides antibodies and antigen-binding fragments thereof that bind specifically to a coronavirus spike protein and methods of using such antibodies and fragments for treating or preventing viral infections (e.g., coronavirus infections).
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: September 29, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Robert Babb, Alina Baum, Gang Chen, Cindy Gerson, Johanna Hansen, Tammy Huang, Christos Kyratsous, Wen-Yi Lee, Marine Malbec, Andrew Murphy, William Olson, Neil Stahl, George D. Yancopoulos
  • Publication number: 20200299414
    Abstract: Multivalent antigen-binding proteins comprising two or three or four or more immunoglobulin heavy chain variable domain binding domains are provided, as are methods for making them, nucleic acid constructs, and cell lines for making them. Protein comprising two or three or four or more different heavy chain variable domains that lack an immunoglobulin variable domain are provided. Proteins comprising two or three or four or more different heavy chain variable domains that associate with the same immunoglobulin light chain variable domain are also provided.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 24, 2020
    Inventors: George D. Yancopoulos, Nicholas J. Papadopoulos, Neil Stahl, Samuel Davis, Andrew J. Murphy, Lynn Macdonald
  • Publication number: 20200299388
    Abstract: The present invention provides multispecific antibodies that bind to EGFR and CD28 (EGFRxCD28) as well as anti-EGFR antibodies. Such antibodies may be combined with a further therapeutic agent such as an anti-PD1 antibody. Methods for treating cancers (e.g., EGFR-expressing cancer) by administering the antibodies (e.g., and combinations thereof with anti-PD1) are also provided. The EGFRxCD28 antibodies of the present invention embody a tumor-targeted immunotherapeutic modality combined with PD-1 inhibition. These bispecific antibodies bind a tumor-specific antigen (TSA) (EGFR) with one arm and the co-stimulatory receptor, CD28, on T-cells with the other arm. Combination therapy with PD-1 inhibitors specifically potentiated intra-tumoral T cell activation, promoting an effector memory-like T cell phenotype without systemic cytokine secretion in a variety of syngeneic and human tumor xenograft models.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 24, 2020
    Inventors: Dimitris Skokos, Andrew J. Murphy, George D. Yancopoulos, Chia-Yang Lin, Lauric Haber
  • Publication number: 20200291425
    Abstract: Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR/Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 17, 2020
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Publication number: 20200255503
    Abstract: The present invention provides methods for treating an allergy by administering one or more antibodies that bind specifically to the allergen. In certain embodiments, the antibodies useful for treating an allergen, bind specifically to the cat allergen, Fel d1. According to certain embodiments of the invention, the antibodies are fully human antibodies that bind to Fel d1. The antibodies of the invention are useful for binding to the Fel d1 allergen in vivo, thus preventing binding of the Fel d1 allergen to pre-formed IgE on the surface of mast cells or basophils. In doing so, the antibodies act to prevent the release of histamine and other inflammatory mediators from mast cells and/or basophils, thus ameliorating the untoward response to the cat allergen in sensitized individuals.
    Type: Application
    Filed: December 15, 2017
    Publication date: August 13, 2020
    Inventors: Jamie M. ORENGO, Namita GRANDHI, Allen RADIN, Ana KOSTIC, Andrew J. MURPHY, George D. YANCOPOULOS
  • Publication number: 20200239576
    Abstract: The present invention provides bispecific antigen-binding molecules comprising a first antigen-binding domain that specifically binds human CD28, and a second antigen-binding molecule that specifically binds human CD-22. In certain embodiments, the bispecific antigen-binding molecules of the present invention are capable of inhibiting the growth of tumors expressing CD-22, such as B-cell lymphomas. The antibodies and bispecific antigen-binding molecules of the invention are useful for the treatment of diseases and disorders in which an up-regulated or induced targeted immune response is desired and/or therapeutically beneficial.
    Type: Application
    Filed: December 18, 2019
    Publication date: July 30, 2020
    Inventors: Andrew J. Murphy, Dimitris Skokos, Janelle Waite, Erica Ullman, Aynur Hermann, Eric Smith, Kara Olson, Joyce Wei, George D. Yancopoulos