Patents by Inventor George Gruner

George Gruner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180277314
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Application
    Filed: March 13, 2018
    Publication date: September 27, 2018
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski, George Gruner
  • Patent number: 10056199
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: August 21, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski, George Gruner
  • Patent number: 9892870
    Abstract: An energy storage device includes a nanostructured network and an electrolyte in contact with the nanostructured network. The nanostructured network is an electrically conducting nanostructured network that provides combined functions of an electrode and a charge collector of the energy storage device. An electrical device includes an energy storage device that includes a nanostructured network and an electrolyte in contact with the nanostructured network, and a load-bearing electrical circuit electrically connected to the electrical energy storage device. The energy storage device is suitable to power the electrical device while in operation.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: February 13, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: George Gruner, Martti Kaempgen, Andreas Kiebele
  • Publication number: 20180005770
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Application
    Filed: April 6, 2017
    Publication date: January 4, 2018
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski, George Gruner
  • Patent number: 9653219
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: May 16, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski, George Gruner
  • Publication number: 20150243452
    Abstract: An energy storage device includes a nanostructured network and an electrolyte in contact with the nanostructured network. The nanostructured network is an electrically conducting nanostructured network that provides combined functions of an electrode and a charge collector of the energy storage device. An electrical device includes an energy storage device that includes a nanostructured network and an electrolyte in contact with the nanostructured network, and a load-bearing electrical circuit electrically connected to the electrical energy storage device. The energy storage device is suitable to power the electrical device while in operation.
    Type: Application
    Filed: February 23, 2015
    Publication date: August 27, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: George Gruner, Martti Kaempgen, Andreas Kiebele
  • Patent number: 8999550
    Abstract: An energy storage device includes a nanostructured network and an electrolyte in contact with the nanostructured network. The nanostructured network is an electrically conducting nanostructured network that provides combined functions of an electrode and a charge collector of the energy storage device. An electrical device includes an energy storage device that includes a nanostructured network and an electrolyte in contact with the nanostructured network, and a load-bearing electrical circuit electrically connected to the electrical energy storage device. The energy storage device is suitable to power the electrical device while in operation.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: April 7, 2015
    Assignee: The Regents of the University of California
    Inventors: George Gruner, Martti Kaempgen, Andreas Kiebele
  • Patent number: 8900517
    Abstract: An electronic system for selectively detecting and identifying a plurality of chemical species, which comprises an array of nanostructure sensing devices, is disclosed. Within the array, there are at least two different selectivities for sensing among the nanostructure sensing devices. Methods for fabricating the electronic system are also disclosed. The methods involve modifying nanostructures within the devices to have different selectivity for sensing chemical species. Modification can involve chemical, electrochemical, and self-limiting point defect reactions. Reactants for these reactions can be supplied using a bath method or a chemical jet method. Methods for using the arrays of nanostructure sensing devices to detect and identify a plurality of chemical species are also provided.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: December 2, 2014
    Assignee: Nanomix, Inc.
    Inventors: Jean-Christophe P. Gabriel, Philip G. Collins, George Gruner, Keith Bradley
  • Publication number: 20140301020
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Application
    Filed: February 5, 2014
    Publication date: October 9, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski, George Gruner
  • Patent number: 8815346
    Abstract: A coated substrate comprising a nanostructure film formed on a non-planar substrate is described. The coated substrate may further be compliant, optically transparent and/or electrically conductive. Fabrication methods thereof are also described.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: August 26, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Liangbing Hu, David Hecht, Jeffrey Jue, George Gruner
  • Patent number: 8785939
    Abstract: A pixel electrode is provided, with a nanostructure-film deposited over an active matrix substrate, such that the pixel electrode makes electrical contact with an underlying layer. Similarly, auxiliary data pads and auxiliary gate pads are provided, which also have nanostructure-films deposited over an active matrix substrate, such that they make electrical contact with underlying layers.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: July 22, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Bae Park, George Gruner, Liangbing Hu
  • Publication number: 20140042390
    Abstract: An interpenetrating network assembly with a network of connected flakes of nano-scale crystalline carbon and nano-scale particles of an electroactive material interconnected with the carbon flakes is provided. The network assemblies are particularly suited for energy storage applications that use metal oxide electroactive materials and a single charge collector or a source and drain. Interpenetrating networks of graphene flakes and metal oxide nanosheets can form independent pathways between source and drain. Nano-scale conductive materials such as metal nanowires, carbon nanotubes, activated carbon or carbon black can be included as part of the conductive network to improve charge transfer.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 13, 2014
    Applicant: THE REGENTS OF UNIVERSITY OF CALIFORNIA
    Inventors: George Gruner, Xiangfeng Duan, Bruce S. Dunn, Veronica Augustyn
  • Patent number: 8520365
    Abstract: The present invention relates generally to charge storage devices with at least one electrode having combined double layer supercapacitor, electrochemical supercapacitor and/or battery functionalities. In some embodiments, the electrode, may be composed of an ECS material, a highly-structured DLS material and a less-structured DLS material.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: August 27, 2013
    Assignee: Amperics Inc.
    Inventors: George Gruner, Ian O'Connor
  • Patent number: 8456074
    Abstract: A flexible electronic device is made up of nanostructures. Specifically, the device includes a flexible substrate, a film of nanostructures in contact with the flexible substrate, a first conducting element in contact with the film of nanostructures, and a second conducting element in contact with the film of nanostructures. The nanostructures may comprise nanotubes, such as carbon nanotubes disposed along the flexible substrate, such as an organic or polymer substrate. The first and second conductive elements may serve as electrical terminals, or as a source and drain. In addition, the electronic device may include a gate electrode that is in proximity to the nanotubes and not in electrical contact with the nanotubes. In this configuration, the device can operate as a transistor or a FET. The device may also be operated in a resistive mode as a chemical sensor (e.g., for sensing NH3).
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: June 4, 2013
    Assignees: Nanomix, Inc., The Regents of the University of California
    Inventors: N. Peter Armitage, Keith Bradley, Jean-Christophe P. Gabriel, George Gruner
  • Patent number: 8390589
    Abstract: Touch screen displays comprising at least one nanostructure-film, and fabrication methods thereof, are discussed. Nanostructure-films may comprise, for example, a network(s) of nanotubes, nanowires, nanoparticles and/or graphene flakes. Such films are preferably at least semi-transparent and relatively flexible, making them well-suited for use in a variety of touch screen applications.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: March 5, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Liangbing Hu, George Gruner
  • Publication number: 20120025165
    Abstract: A flexible electronic device is made up of nanostructures. Specifically, the device includes a flexible substrate, a film of nanostructures in contact with the flexible substrate, a first conducting element in contact with the film of nanostructures, and a second conducting element in contact with the film of nanostructures. The nanostructures may comprise nanotubes, such as carbon nanotubes disposed along the flexible substrate, such as an organic or polymer substrate. The first and second conductive elements may serve as electrical terminals, or as a source and drain. In addition, the electronic device may include a gate electrode that is in proximity to the nanotubes and not in electrical contact with the nanotubes. In this configuration, the device can operate as a transistor or a FET. The device may also be operated in a resistive mode as a chemical sensor (e.g., for sensing NH3).
    Type: Application
    Filed: April 28, 2011
    Publication date: February 2, 2012
    Applicant: NANOMIX, INC.
    Inventors: N. Peter Armitage, Keith Bradley, Jean-Christophe P. Gabriel, George GrĂ¼ner
  • Publication number: 20110261502
    Abstract: Provided is a new charge storage device structure, incorporating a double layer supercapacitor (DLS) material, electrochemical supercapacitor (ECS) material and/or battery material. More specifically, the DLS material, ECS material and/or battery material may form multilayer electrode structures. Additionally or alternatively, the DLS material, ECS material and/or battery material may form electrode structures in which the DLS material, ECS material and/or battery material are in contact with both a common current collector and electrolyte. The present invention can be generalized towards other energy storage devices, opening a new avenue for a large spectrum of device applications.
    Type: Application
    Filed: February 18, 2011
    Publication date: October 27, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: George Gruner
  • Publication number: 20110255214
    Abstract: The present invention relates generally to charge storage devices with at least one electrode having combined double layer supercapacitor, electrochemical supercapacitor and/or battery functionalities. In some embodiments, the electrode, may be composed of an ECS material, a highly-structured DLS material and a less-structured DLS material.
    Type: Application
    Filed: April 18, 2011
    Publication date: October 20, 2011
    Inventors: George Gruner, Ian O'Connor
  • Publication number: 20110240338
    Abstract: The present invention describes supercapacitors with enhanced energy density and power density, achieved largely through use of electrodes that incorporate ternary oxide(s). Ternary oxide(s) are ternary nanostructures have the formula AxByOz, wherein x ranges from 0.25 to 24, and y ranges from 0.5 to 40, and z ranges from 2 to 100, and wherein A and B are independently selected from groups of elements specified in this application.
    Type: Application
    Filed: April 4, 2011
    Publication date: October 6, 2011
    Applicant: AMPERICS INC.
    Inventors: George Gruner, Ian O'Connor
  • Publication number: 20110154648
    Abstract: This invention provides for an apparatus and a method for detecting the presence of pathogenic agents with sensors containing functionalized nanostructures integrated into circuits on silicon chips. The nanostructures are functionalized with molecular transducers that recognize and bind targeted analytes which are diagnostic of the pathogenic agent of interest. The molecular transducer includes a receptor portion, which binds the analyte, and an anchor portion that attaches to the nanostructure. Upon binding of the analyte, a change in molecular configuration represented by the newly formed receptor-analyte complex creates a force that is transmitted to the nanostructure via the anchor portion of the transducer. The effect of the force transmitted to the nanostructure is to alter its conductivity. The change in conductivity of the nanotube thus represents a signal that indicates the presence of the pathogenic agent of interest.
    Type: Application
    Filed: March 14, 2011
    Publication date: June 30, 2011
    Applicant: NANOMIX, INC.
    Inventors: Jean Christophe Gabriel, George Gruner, Philip Collins, Basil Swanson, Fred Wudl