Patents by Inventor George J. Samuels

George J. Samuels has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180171195
    Abstract: The invention pertains to heat transfer compositions, particularly to automobile refrigerants comprising a hydrofluoroalkene, an iodocarbon, and at least one lubricant having hydrogen atoms and carbon atoms, wherein no more than 17% of the total number of hydrogen atoms which are attached to a carbon atom are tertiary hydrogen atoms.
    Type: Application
    Filed: February 14, 2018
    Publication date: June 21, 2018
    Inventors: Raymond H. Thomas, Rajiv R. Singh, George J. Samuels, Ian Shankland, David P. Wilson, Roy P. Robinson, Michael Van Der Puy, John L. Welch, Gregory J. Shafer, Mark W. Spatz, Ryan Hulse
  • Patent number: 9920230
    Abstract: The invention pertains to heat transfer compositions, particularly to automobile refrigerants comprising a hydrofluoroalkene, an iodocarbon, and at least one lubricant having hydrogen atoms and carbon atoms, wherein no more than 17% of the total number of hydrogen atoms which are attached to a carbon atom are tertiary hydrogen atoms.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: March 20, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Raymond H. Thomas, Rajiv R. Singh, George J. Samuels, Ian Shankland, David P. Wilson, Roy P. Robinson, Michael Van Der Puy, John L. Welch, Gregory J. Shafer, Mark W. Spatz, Ryan Hulse
  • Publication number: 20170306070
    Abstract: A process for the preparation of a fluoroolefin polymer from an azeotropic mixture of monomers having a constant composition, the process including the step of: contacting in a reaction zone: (i) an initiator; and (ii) an azeotropic mixture of monomers including at least one fluoroolefin and, optionally, at least one ethylenically unsaturated comonomer capable of copolymerizing therewith; wherein the contacting is carried out at a temperature, pressure and length of time sufficient to produce the fluoroolefin polymer.
    Type: Application
    Filed: July 13, 2017
    Publication date: October 26, 2017
    Inventors: George J. Samuels, Gregory J. Shafer, Hang T. Pham
  • Publication number: 20140005335
    Abstract: A process for the preparation of a fluoroolefin polymer from an azeotropic mixture of monomers having a constant composition, the process including the step of: contacting in a reaction zone: (i) an initiator; and (ii) an azeotropic mixture of monomers including at least one fluoroolefin and, optionally, at least one ethylenically unsaturated comonomer capable of copolymerizing therewith; wherein the contacting is carried out at a temperature, pressure and length of time sufficient to produce the fluoroolefin polymer.
    Type: Application
    Filed: September 5, 2013
    Publication date: January 2, 2014
    Applicant: Honeywell International Inc.
    Inventors: George J. Samuels, Gregory J. Shafer, Hang T. Pham
  • Patent number: 8552128
    Abstract: A process for the preparation of a fluoroolefin polymer from an azeotropic mixture of monomers having a constant composition, the process including the step of: contacting in a reaction zone: (i) an initiator; and (ii) an azeotropic mixture of monomers including at least one fluoroolefin and, optionally, at least one ethylenically unsaturated comonomer capable of copolymerizing therewith; wherein the contacting is carried out at a temperature, pressure and length of time sufficient to produce the fluoroolefin polymer.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: October 8, 2013
    Assignee: Honeywell International Inc.
    Inventors: George J Samuels, Gregory J Shafer, Hang T Pham
  • Publication number: 20120184697
    Abstract: A polyvinylidene difluoride copolymer with a fluoroolefin selected from 2,3,3,3-tetrafluoropropene, 1,1,3,3,3-pentafluoropropene, 2-chloro-pentafluoropropene, hexafluoropropylene, trifluoroethylene, chlorotrifluoroethylene, 3,3,3-trifluoro-2-trifluoromethylpropene and a mixture thereof, wherein the stoichiometry of the co-monomers defines the barrier properties of the copolymer. Such polymers include moisture barrier copolymers and oxygen barrier copolymer. Processes for preparing such moisture barrier copolymers and oxygen barrier copolymers are also provided.
    Type: Application
    Filed: March 20, 2012
    Publication date: July 19, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: GEORGE J. SAMUELS, GREGORY J. SHAFER, TAO LI, CLINTON A. THRELFALL, NANCY IWAMOTO, ERIC J. RAINAL
  • Patent number: 8163858
    Abstract: A polyvinylidene difluoride copolymer with a fluoroolefin selected from 2,3,3,3-tetrafluoropropene, 1,1,3,3,3-pentafluoropropene, 2-chloro-pentafluoropropene, hexafluoropropylene, trifluoroethylene, chlorotrifluoroethylene, 3,3,3-trifluoro-2-trifluoromethylpropene and a mixture thereof, wherein the stoichiometry of the co-monomers defines the barrier properties of the copolymer. Such polymers include moisture barrier copolymers and oxygen barrier copolymer. Processes for preparing such moisture barrier copolymers and oxygen barrier copolymers are also provided.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 24, 2012
    Assignee: Honeywell International Inc.
    Inventors: George J Samuels, Gregory J Shafer, Tao Li, Clinton A Threlfall, Nancy Iwamoto, Eric J Rainal
  • Patent number: 8133407
    Abstract: Provided is a composition comprising (a) at least one halogenated compound selected from the group consisting of C3-C5 hydrofluoroolefin, CF3I, and combinations thereof, and (b) an effective stabilizing amount of a sesquiterpene selected from the group consisting of farnesol, farnesene, and mixtures thereof.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: March 13, 2012
    Assignee: Honeywell International Inc.
    Inventors: Gary Zyhowski, Rajiv Ratna Singh, Raymond H. Thomas, Mark W. Spatz, Roy P. Robinson, George J. Samuels, Gregory J. Shafer, Michael Van Der Puy, David P. Wilson, John L. Welch, Ronald P. Vogl, Samuel F. Yana Motta
  • Patent number: 8063149
    Abstract: A polymer blend including: (i) a fluoroolefin polymer prepared by a process, including contacting in a first reaction zone an initiator, 2,3,3,3-tetrafluoro-1-propene, and optionally, at least one first ethylenically unsaturated comonomer capable of copolymerizing therewith, wherein contacting is carried out at a first temperature, pressure and length of time sufficient to produce the fluoroolefin polymer; and (ii) an acrylic polymer prepared by a process, including contacting in a second reaction zone an initiator, at least one acrylic monomer selected from the group consisting of: acrylic acid, methacrylic acid, acrylate ester, methacrylate ester, and a mixture thereof, and optionally, at least one second ethylenically unsaturated comonomer capable of copolymerizing therewith, wherein contacting is carried out at a second temperature, pressure and length of time sufficient to produce the acrylic polymer. Processes for preparing the polymer blends are also provided.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: November 22, 2011
    Assignee: Honeywell International Inc.
    Inventors: George J Samuels, Gregory J Shafer
  • Publication number: 20110126558
    Abstract: The invention pertains to heat transfer compositions, particularly to automobile refrigerants comprising a hydrofluoroalkene, an iodocarbon, and at least one lubricant having hydrogen atoms and carbon atoms, wherein no more than 17% of the total number of hydrogen atoms which are attached to a carbon atom are tertiary hydrogen atoms.
    Type: Application
    Filed: February 8, 2011
    Publication date: June 2, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: RAYMOND H. THOMAS, RAJIV R. SINGH, GEORGE J. SAMUELS, IAN SHANKLAND, DAVID P. WILSON, ROY P. ROBINSON, MICHAEL VAN DER PUY, JOHN L. WELCH, GREGORY J. SHAFER, MARK W. SPATZ, RYAN HULSE
  • Patent number: 7803890
    Abstract: A process for the preparation of a fluoroolefin polymer, including the step of: contacting in a reaction zone: an initiator; CF3CF?CH2, and optionally, at least one ethylenically unsaturated comonomer capable of copolymerizing therewith; wherein the contacting is carried out at a temperature, pressure and length of time sufficient to produce the fluoroolefin polymer.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: September 28, 2010
    Assignee: Honeywell International Inc.
    Inventors: George J Samuels, Gregory J Shafer
  • Publication number: 20100081570
    Abstract: Chloropentafluoropropene is employed as a herbicide for the effective control of undesirable spermatophyte growth.
    Type: Application
    Filed: September 24, 2009
    Publication date: April 1, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: ANDREW J. POSS, MICHAEL VAN DER PUY, RAJIV R. SINGH, GEORGE J. SAMUELS, DAVID NALEWAJEK, CHERYL L. CANTLON
  • Publication number: 20090283712
    Abstract: Provided is a composition comprising (a) at least one halogenated compound selected from the group consisting of C3-C5 hydrofluoroolefin, CF3I, and combinations thereof, and (b) an effective stabilizing amount of a sesquiterpene selected from the group consisting of farnesol, farnesene, and mixtures thereof.
    Type: Application
    Filed: May 15, 2009
    Publication date: November 19, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Gary Zyhowski, Rajiv Ratna Singh, Raymond H. Thomas, Mark W. Spatz, Roy P. Robinson, George J. Samuels, Gregory J. Shafer, Michael Van Der Puy, David P. Wilson, John L. Welch, Ronald P. Vogl, Samuel F. Yana Motta
  • Publication number: 20080171844
    Abstract: A polyvinylidene difluoride copolymer with a fluoroolefin selected from 2,3,3,3-tetrafluoropropene, 1,1,3,3,3-pentafluoropropene, 2-chloro-pentafluoropropene, hexafluoropropylene, trifluoroethylene, chlorotrifluoroethylene, 3,3,3-trifluoro-2-trifluoromethylpropene and a mixture thereof, wherein the stoichiometry of the co-monomers defines the barrier properties of the copolymer. Such polymers include moisture barrier copolymers and oxygen barrier copolymer. Processes for preparing such moisture barrier copolymers and oxygen barrier copolymers are also provided.
    Type: Application
    Filed: December 20, 2007
    Publication date: July 17, 2008
    Inventors: George J. Samuels, Gregory J. Shafer, Tao Li, Clinton A. Threlfall, Nancy Iwamoto, Eric J. Rainal
  • Publication number: 20080157023
    Abstract: The invention pertains to heat transfer compositions, particularly to automobile refrigerants comprising a hydrofluoroalkene, an iodocarbon, a lubricant and a metal stabilizer.
    Type: Application
    Filed: November 8, 2007
    Publication date: July 3, 2008
    Inventors: George J. Samuels, Samuel F. Yana Motta, Gregory J. Shafer, Rajiv R. Singh, Mark W. Spatz, Raymond H. Thomas, Michael Van Der Puy, John L. Welch, David P. Wilson, Gary Zyhowski
  • Publication number: 20080153977
    Abstract: A polymer blend including: (i) a fluoroolefin polymer prepared by a process, including contacting in a first reaction zone an initiator, 2,3,3,3-tetrafluoro-1-propene, and optionally, at least one first ethylenically unsaturated comonomer capable of copolymerizing therewith, wherein contacting is carried out at a first temperature, pressure and length of time sufficient to produce the fluoroolefin polymer; and (ii) an acrylic polymer prepared by a process, including contacting in a second reaction zone an initiator, at least one acrylic monomer selected from the group consisting of: acrylic acid, methacrylic acid, acrylate ester, methacrylate ester, and a mixture thereof, and optionally, at least one second ethylenically unsaturated comonomer capable of copolymerizing therewith, wherein contacting is carried out at a second temperature, pressure and length of time sufficient to produce the acrylic polymer. Processes for preparing the polymer blends are also provided.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 26, 2008
    Inventors: George J. Samuels, Gregory J. Shafer
  • Publication number: 20080153978
    Abstract: A process for the preparation of a fluoroolefin polymer, including the step of: contacting in a reaction zone: an initiator; CF3CF?CH2, and optionally, at least one ethylenically unsaturated comonomer capable of copolymerizing therewith; wherein the contacting is carried out at a temperature, pressure and length of time sufficient to produce the fluoroolefin polymer.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 26, 2008
    Inventors: George J. Samuels, Gregory J. Shafer
  • Publication number: 20080153955
    Abstract: A process for the preparation of a fluoroolefin polymer from an azeotropic mixture of monomers having a constant composition, the process including the step of: contacting in a reaction zone: (i) an initiator; and (ii) an azeotropic mixture of monomers including at least one fluoroolefin and, optionally, at least one ethylenically unsaturated comonomer capable of copolymerizing therewith; wherein the contacting is carried out at a temperature, pressure and length of time sufficient to produce the fluoroolefin polymer.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 26, 2008
    Inventors: George J. Samuels, Gregory J. Shafer, Hang T. Pham
  • Publication number: 20080116417
    Abstract: A method for removing iodine and iodide ions from heat transfer compositions which contain a hydrofluoroalkene, an iodocarbon, and iodine and iodide ions. Iodine and iodide ions from such heat transfer compositions by contacting the composition with a molecular sieve, ion exchange resin, clay or alumina, metal impregnated with a metal which is capable of reacting with iodine and iodide ions.
    Type: Application
    Filed: November 8, 2007
    Publication date: May 22, 2008
    Inventors: George J. Samuels, Samuel F. Yana Motta, Gregory J. Shafer, Rajiv R. Singh, Mark W. Spatz, Raymond H. Thomas, Michael Van Der Puy, John L. Welch, Gary Zyhowski, David P. Wilson
  • Publication number: 20080110833
    Abstract: A method for removing iodine from heat transfer compositions which contain a hydrofluoroalkene, an iodocarbon, and iodine. Iodine from such heat transfer compositions by contacting the composition with activated carbon.
    Type: Application
    Filed: November 8, 2007
    Publication date: May 15, 2008
    Inventors: George J. Samuels, Samuel F. Yana Motta, Gregory J. Shafer, Rajiv R. Singh, Mark W. Spatz, Raymond H. Thomas, Michael Van Der Puy, John L. Welch, Gary Zyhowski, David P. Wilson