Patents by Inventor George Maxim

George Maxim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180114801
    Abstract: Disclosed is a radio frequency (RF) switch that includes a substrate and a plurality of elongated drain/source (D/S) diffusion regions laterally disposed in parallel with one another and separated by a plurality of elongated channel regions. A plurality of elongated D/S resistor regions extends between an adjacent pair of plurality of elongated D/S diffusion regions, and a plurality of elongated gate structures resides over corresponding ones of the elongated channel regions. A silicide layer resides over a majority of at least top surfaces of the plurality of the elongated D/S diffusion regions and the plurality of elongated gate structures, wherein less than a majority of each of the plurality of the elongated D/S resistor regions are covered by the silicide layer.
    Type: Application
    Filed: October 20, 2017
    Publication date: April 26, 2018
    Inventors: Dirk Robert Walter Leipold, George Maxim, Baker Scott, Julio C. Costa
  • Patent number: 9954498
    Abstract: RF communications circuitry, which includes a first tunable RF filter and a first RF low noise amplifier (LNA) is disclosed. The first tunable RF filter includes a pair of weakly coupled resonators, and receives and filters a first upstream RF signal to provide a first filtered RF signal. The first RF LNA is coupled to the first tunable RF filter, and receives and amplifies an RF input signal to provide an RF output signal.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: April 24, 2018
    Assignee: Qorvo US, Inc.
    Inventors: George Maxim, Dirk Robert Walter Leipold, Baker Scott
  • Patent number: 9948251
    Abstract: A low noise amplifier (LNA) system having a constant noise factor (Const-NF) mode and a constant third-order intercept (Const-IP3) mode is disclosed. The LNA system includes an LNA core and a trade-off bias network coupled to the LNA core to selectably bias the LNA core to realize the Const-NF mode and the Const-IP3 mode. The trade-off bias network is made up of selectable Const-NF circuitry and selectable Const-IP3 circuitry. The LNA system further includes a bias switching controller that is configured to enable the selectable Const-NF circuitry and disable the selectable Const-IP3 circuitry to select the Const-NF mode in response to a first condition and to disable the selectable Const-NF circuitry and enable the selectable Const-IP3 circuitry to select the Const-IP3 mode in response to a second condition.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: April 17, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Baker Scott, George Maxim, Dirk Robert Walter Leipold, Kelvin Kai Tuan Yan
  • Patent number: 9942991
    Abstract: This disclosure relates to integrated circuit (IC) packages and methods of manufacturing the same. In one method, a printed circuit board is provided with semiconductor die. The semiconductor die includes a Back-End-of-Line (BEOL) region, a Front-End-of-Line (FEOL) region, and a semiconductor handle such that the BEOL region, the FEOL region, and the semiconductor handle are stacked. A first polymer layer is provided over the printed circuit board so as to cover the semiconductor die. The semiconductor handle of the semiconductor die is exposed through the first polymer layer and removed. A second polymer layer is then provided so that the BEOL region, the FEOL region, and at least a portion of the second polymer layer are stacked. The second polymer layer may be provided to have high thermal conductivity and electric isolation properties thereby providing advantageous package characteristics.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: April 10, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, George Maxim, Dirk Robert Walter Leipold, Baker Scott
  • Publication number: 20180097507
    Abstract: Embodiments of an acoustic wave filter system that includes at least one acoustic wave filter and acoustic wave tuning control circuitry are disclosed. The acoustic wave filter includes at least one acoustic wave resonator and defines a passband. To provide tuning for calibration or for dynamic filter operation, the acoustic wave tuning control circuitry is configured to bias one or more of the acoustic wave resonators with bias voltages. Biasing an acoustic wave resonator affects the resonances of the resonator, thereby allowing for the passband of the acoustic wave resonator to be tuned. Accordingly, the acoustic wave tuning control circuitry is configured to adjust the bias voltages so that the acoustic wave filter shifts the passband. In this manner, the passband of the acoustic wave filter can be tuned with high degree of accuracy and without requiring physical alterations to the acoustic wave resonators.
    Type: Application
    Filed: October 31, 2016
    Publication date: April 5, 2018
    Inventors: Baker Scott, Robert Aigner, Gernot Fattinger, George Maxim, Dirk Robert Walter Leipold, Nadim Khlat
  • Patent number: 9935031
    Abstract: A printed circuit module having a protective layer in place of a low-resistivity handle layer and methods for manufacturing the same are disclosed. The printed circuit module includes a printed circuit substrate with a thinned die attached to the printed circuit substrate. The thinned die includes at least one device layer over the printed circuit substrate and at least one deep well within the at least one device layer. A protective layer is disposed over the at least one deep well, wherein the protective layer has a thermal conductivity greater than 2 watts per meter Kelvin (W/mK) and an electrical resistivity of greater than 106 Ohm-cm.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: April 3, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Dirk Robert Walter Leipold, Julio C. Costa, Baker Scott, George Maxim
  • Patent number: 9935210
    Abstract: The present disclosure relates to a microelectronics package with optical sensors and/or thermal sensors. The disclosed microelectronics package includes a module substrate, a thinned flip-chip die with an upper surface that includes a first surface portion and a second surface portion surrounding the first surface portion, and a first mold compound component. The thinned flip-chip die is attached to the module substrate and includes a device layer with sensor structure integrated at a top portion of the device layer. Herein, the sensor structure is below the first surface portion and not below the second surface portion. The first mold compound component is formed over the second surface portion to define a first cavity over the upper surface of the thinned flip-chip die. The first mold compound component is not over the first surface portion, and the first surface portion is exposed at the bottom of the first cavity.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: April 3, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Dirk Robert Walter Leipold, George Maxim, Julio C. Costa, Baker Scott
  • Patent number: 9935064
    Abstract: The present disclosure relates to a microelectronics package with an inductive element and a magnetically enhanced mold compound component, and a process for making the same. The disclosed microelectronics package includes a module substrate, a thinned flip-chip die with an upper surface that includes a first surface portion and a second surface portion surrounding the first surface portion, the magnetically enhanced mold compound component, and a mold compound component. The thinned flip-chip die is attached to the module substrate and includes a device layer with an inductive element embedded therein. Herein, the inductive element is underlying the first surface portion and not underlying the second surface portion. The magnetically enhanced mold compound component is formed over the first surface portion. The mold compound component is formed over the second surface portion, not over the first surface portion, and surrounding the magnetically enhanced mold compound component.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: April 3, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, George Maxim, Dirk Robert Walter Leipold, Baker Scott
  • Patent number: 9929458
    Abstract: A resonator includes an inductive element and a conductive cavity surrounding the inductive element. In particular, the conductive cavity surrounds the inductive element such that a capacitance is distributed between the inductive element and the conductive cavity. By distributing a capacitance between the inductive element and the conductive cavity, a high quality-factor resonator can be achieved by the resonator with a relatively small form factor.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: March 27, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Dirk Robert Walter Leipold, George Maxim, Baker Scott
  • Publication number: 20180083575
    Abstract: An amplifier having improved linearity is disclosed. The amplifier includes a main transistor having a first current input terminal, a first current output terminal, and a first control terminal coupled to an RF input terminal that receives a signal voltage. A cascode transistor has a second current input terminal coupled to an RF output terminal for outputting an amplified signal. The cascode transistor has a second control terminal, and a second current output terminal coupled to the first current input terminal. Linearization circuitry has a bias output terminal coupled to the second control terminal. The linearization circuitry is configured to generate a bias signal at the bias output terminal to maintain a quiescent point of the main transistor for a given load coupled to the RF output terminal such that output conductance of the main transistor decreases nonlinearly with increasing main voltage and increases nonlinearly with decreasing main voltage.
    Type: Application
    Filed: April 20, 2017
    Publication date: March 22, 2018
    Inventors: George Maxim, Kelvin Kai Tuan Yan, Marcus Granger-Jones, Dirk Robert Walter Leipold, Baker Scott
  • Patent number: 9922847
    Abstract: The present disclosure relates to a microelectronics package with an inductive element and a magnetically enhanced mold compound component, and a process for making the same. The disclosed microelectronics package includes a module substrate, a thinned flip-chip die with an upper surface that includes a first surface portion and a second surface portion surrounding the first surface portion, the magnetically enhanced mold compound component, and a mold compound component. The thinned flip-chip die is attached to the module substrate and includes a device layer with an inductive element embedded therein. Herein, the inductive element is underlying the first surface portion and not underlying the second surface portion. The magnetically enhanced mold compound component is formed over the first surface portion. The mold compound component is formed over the second surface portion, not over the first surface portion, and surrounding the magnetically enhanced mold compound component.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: March 20, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, George Maxim, Dirk Robert Walter Leipold, Baker Scott
  • Patent number: 9922898
    Abstract: The present disclosure relates to a thermally enhanced semiconductor package, which includes a module substrate, a thinned flip chip die over the substrate, a first mold compound component, and a thermally enhanced mold compound component. The first mold compound component resides over the module substrate, surrounds the thinned flip chip die, and extends above an upper surface of the thinned flip chip die to form a cavity over the upper surface of the thinned flip chip die. The thermally enhanced mold compound component includes a lower portion filling a lower region of the cavity and residing over the upper surface of the thinned flip chip die, and an upper portion filling an upper region of the cavity and residing over the lower portion. A first average thermal conductivity of the lower portion is at least 1.2 times greater than a second average thermal conductivity of the upper portion.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: March 20, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, George Maxim, Dirk Robert Walter Leipold, Baker Scott, Merrill Albert Hatcher, Jr., Stephen Mobley
  • Publication number: 20180076174
    Abstract: The present disclosure relates to a semiconductor package with reduced parasitic coupling effects, and a process for making the same. The disclosed semiconductor package includes a thinned flip-chip die and a first mold compound component with a dielectric constant no more than 7. The thinned flip-chip die includes a back-end-of-line (BEOL) layer with an upper surface that includes a first surface portion and a second surface portion surrounding the first surface portion, a device layer over the upper surface of the BEOL layer, and a buried oxide (BOX) layer over the device layer. The BEOL layer includes a first passive device and a second passive device, which are underlying the first surface portion and not underlying the second surface portion. Herein, the first mold compound component extends through the BOX layer and the device layer to the first surface portion.
    Type: Application
    Filed: April 26, 2017
    Publication date: March 15, 2018
    Inventors: Julio C. Costa, George Maxim, Dirk Robert Walter Leipold, Baker Scott
  • Publication number: 20180069510
    Abstract: Embodiments of the disclosure relate to a frequency selective low noise amplifier (LNA) circuit, which includes a transconductive LNA(s). In one aspect, filter circuitry is provided in a degeneration path of a transconductive LNA(s) to pass in-band frequencies and reject out-of-band frequencies by generating low impedance and high impedance at the in-band frequencies and the out-of-band frequencies, respectively. However, having the filter circuitry in the degeneration path may cause instability in the transconductive LNA. As such, a feedback path is coupled between an input node of the transconductive LNA(s) and the degeneration path to provide a feedback to improve stability of the transconductive LNA(s). In addition, the feedback can help improve impedance match in the frequency selective LNA circuit. As a result, the transconductive LNA(s) is able to achieve improved noise figure (NF) (e.g., below 1.5 dB), return loss, linearity, and stability, without compromising LNA gain.
    Type: Application
    Filed: August 29, 2017
    Publication date: March 8, 2018
    Inventors: Marcus Granger-Jones, Nadim Khlat, George Maxim
  • Publication number: 20180053704
    Abstract: A printed circuit module having a protective layer in place of a low-resistivity handle layer and methods for manufacturing the same are disclosed. The printed circuit module includes a printed circuit substrate with a thinned die attached to the printed circuit substrate. The thinned die is an integrated passive die (IPD) without a silicon substrate layer. A protective layer is disposed over the IPD, wherein the protective layer has a thermal conductivity between 2 watts per meter Kelvin (W/mK) and 6600 W/mK and an electrical resistivity of greater than 106 Ohm-cm.
    Type: Application
    Filed: October 27, 2017
    Publication date: February 22, 2018
    Inventors: Dirk Robert Walter Leipold, Julio C. Costa, Baker Scott, George Maxim
  • Publication number: 20180054298
    Abstract: Embodiments of the disclosure relate to a phase locked loop (PLL)-less millimeter wave (mmWave) power head. The mmWave power head receives a multiplexed signal including a pilot signal at a base frequency and a communication signal at the IF frequency. The mmWave power head separates the pilot signal from the communication signal and multiplies the pilot signal to generate a local oscillator (LO) clock signal(s) at a harmonic frequency(ies) relative to the base frequency of the pilot signal. A selected LO clock signal is provided to a mixer circuit(s) for up and down conversions between the IF frequency and the mmWave carrier frequency. By eliminating the PLL frequency synthesizer from the mmWave power head, it is possible to avoid spur and coupling issues associated with collocating the PLL frequency synthesizer with an antenna front end module (FEM), thus helping to improve reliability and performance of the mmWave power head.
    Type: Application
    Filed: August 16, 2017
    Publication date: February 22, 2018
    Inventors: Dirk Robert Walter Leipold, George Maxim, Baker Scott
  • Patent number: 9899289
    Abstract: A printed circuit module having a protective layer in place of a low-resistivity handle layer and methods for manufacturing the same are disclosed. The printed circuit module includes a printed circuit substrate with a thinned die attached to the printed circuit substrate. The thinned die includes at least one device layer over the printed circuit substrate and at least one deep well within the at least one device layer. A protective layer is disposed over the at least one deep well, wherein the protective layer has a thermal conductivity greater than 2 watts per meter Kelvin (W/mK) and an electrical resistivity of greater than 106 Ohm-cm.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: February 20, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Dirk Robert Walter Leipold, Julio C. Costa, Baker Scott, George Maxim
  • Patent number: 9899543
    Abstract: The present disclosure relates to a microelectronics package with optical sensors and/or thermal sensors. The disclosed microelectronics package includes a module substrate, a thinned flip-chip die with an upper surface that includes a first surface portion and a second surface portion surrounding the first surface portion, and a first mold compound component. The thinned flip-chip die is attached to the module substrate and includes a device layer with sensor structure integrated at a top portion of the device layer. Herein, the sensor structure is below the first surface portion and not below the second surface portion. The first mold compound component is formed over the second surface portion to define a first cavity over the upper surface of the thinned flip-chip die. The first mold compound component is not over the first surface portion, and the first surface portion is exposed at the bottom of the first cavity.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: February 20, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Dirk Robert Walter Leipold, George Maxim, Julio C. Costa, Baker Scott
  • Patent number: 9899133
    Abstract: Embodiments of an apparatus that includes a substrate and an inductor residing in the substrate are disclosed. In one embodiment, the inductor is formed as a conductive path that extends from a first terminal to a second terminal. The conductive path has a shape corresponding to a two-dimensional (2D) lobe laid over a three-dimensional (3D) volume. Since the shape of the conductive path corresponds to the 2D lobe laid over a 3D volume, the magnetic field generated by the inductor has magnetic field lines that are predominately destructive outside the inductor and magnetic field lines that are predominately constructive inside the inductor. In this manner, the inductor can maintain a high quality (Q) factor while being placed close to other components.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: February 20, 2018
    Assignee: Qorvo US, Inc.
    Inventors: George Maxim, Dirk Robert Walter Leipold, Baker Scott
  • Patent number: 9899340
    Abstract: The present disclosure relates to a microelectronics package with an inductive element and a magnetically enhanced mold compound component, and a process for making the same. The disclosed microelectronics package includes a module substrate, a thinned flip-chip die with an upper surface that includes a first surface portion and a second surface portion surrounding the first surface portion, the magnetically enhanced mold compound component, and a mold compound component. The thinned flip-chip die is attached to the module substrate and includes a device layer with an inductive element embedded therein. Herein, the inductive element is underlying the first surface portion and not underlying the second surface portion. The magnetically enhanced mold compound component is formed over the first surface portion. The mold compound component is formed over the second surface portion, not over the first surface portion, and surrounding the magnetically enhanced mold compound component.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: February 20, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, George Maxim, Dirk Robert Walter Leipold, Baker Scott